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Overview

• Introduction

• Ascorbic Acid Interference on Glucose Detection

• Aims of Study – Use of NanoLayers for Biosensing

• Layer by Layer Growth of PPy-GOx/P-oPDA Films

• Stability and Sensitivity of PPy-GOx/P-oPDA
Electrode Response

• Stability of GOx in PPy-GOx/P-oPDA Bilayer
Arrangement
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Commonly Used Conducting Polymers
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Useful Properties of Conducting Polymers
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Electropolymerization of Pyrrole
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Benefits of Electropolymerization of Pyrrole for
Enzyme Immobilization

• Enzyme Immobilization by Entrapment in
Conducting Polymers is One of The Simplest,
Quick and Most Attractive Methods for Fabrication
of Biosensors

• Use of Polypyrrole Has Gained Much Interest in
this Area because of the Ability to Form in Aqueous
Solutions

• Polypyrrole is the Most Ideal Conducting Polymer –
Easily Polymerised at Low Anodic Potentials from
Aqueous Solutions

• Provides Excellent Sensing Medium for Detection
of Various Catalytic Products
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Electroimmobilization of Enzyme in Polypyrrole
Film by Entrapment

• Used in this Study to Entrap Glucose Oxidase in 55
nm Thick PPy Film

• Measured Glucose by Detecting H2O2 Generated
by Potentiometry or Amperometry
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Interference of Ascorbic Acid on Glucose
Measurement with PPy-GOx Electrode

• Fabricate a Nanometer Thick Polypyrrole-GOx Single Layer
Electrode

• Gave "Super" Nernstian Response (up to 100 mV per
Decade) for Potentiometric Detection of Glucose

• Detect as Little as 10 µM Glucose

• Performance was Affected by Presence of Ascorbic Acid,
Resulting in Enhancement of Glucose Response

• Need for a Strategy to Reduce or Eliminate Ascorbic Acid
Interferences to Attain Optimum Performance

• Consider Use of Non-Conducting (Insulating) P-o-PDA Film
as an Additional Layer over the PPy-GOx Layer

• P-o-PDA Film can be Readily Permeated by Protons, but Not
by Large Molecules
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Aims of Study

• Develop Strategy for Growing Non-Conducting
Poly-ortho-Phenylenediamine (P-o-PDA) Film on
Conducting Polypyrrole-Glucose Oxidase Film

• Investigate the Effectiveness of the Use of Poly-
ortho-Phenylenediamine (P-o-PDA) Film for
Removing Ascorbic Acid Interference from Glucose
Determination

• Study the Effects of Hydrodynamics on
Potentiometric and Amperometric Biosensing of
Glucose with the Bilayer Electrode
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Strategy for Layer by Layer Electrochemical
Fabrication of Composite Biosensors

P-oPDA layerPolymer/Enzyme layer
Electrode
Surface

Monolayer Bilayer

Trilayer
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Electropolymerisation of o-PDA in KCl

• 1st Peak Current Magnitude is Directly Proportional to Square
Root of Scan Rate and is Associated with o-PDA Oxidation

• 2nd Peak Current is Independent of Scan Rate and Attributed
to the PolymerisationProcess
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Electropolymerisation of o-PDA in
Phosphate Buffer

• Anodic Peak Currents Decreased Significantly with Repeated Cycle
• Current Magnitudes were Lower than in Chloride Solution, Possibly Due

to Difference in Electroconductivity of the P-o-PDA films in the different
Media

• Chosen as it Enabled Better Regulation of Film Thickness at Low Current
Magnitude
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Permeability of P-o-PDA Film by H2O2

• P-o-PDA Films are Highly Permeable to H2O2 as Evident with Different
Thickness

• Response Decreased with Increased Film Thickness

• Use of P-o-PDA as an Outer Layer in a Bilayer Arrangement will
Enable Adequate Detection of Glucose via its Catalytic Product (H2O2)
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Permeability of PPy-GOx/P-o-PDA Bilayer by
Ascorbic Acid

• Bilayer Arrangement of Pt/PPy-GOx/P-o-PDA Eliminate Ascorbic Acid
Interference

• Use of Pt/P-o-PDA-GOx Electrode Gave Low Sensitivity (27 mV/dec) and
Long Response Time for Potentiometric Sensing of Glucose

• Use of a Pt/PPy-P-o-PDA-GOx Electrode (Q = 30mC/cm2) Gave High
Sensitivity (84 mV/dec); Ascorbic Acid Interference as for Pt/PPy(0.1M)-GOx
Electrode
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Potentiometric Response of PPy-GOx/P-o-PDA
Bilayer Biosensor

• Gave Very Sensitive Potentiometric Response to Glucose (about 100
mV/dec) and Not Affected by Ascorbic Acid and was Highly Stable with Time

• Significantly Influenced by Hydrodynamic Conditions (Electrolyte Stirring
Rate)

• Responses in Stirred Solutions (∆)were More Sensitive than in Stagnant
Solutions (x)
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Potentiometric Response of P-o-PDA/PPy-GOx
Bilayer Biosensor

• Less Sensitive Responses than Obtained with Pt/PPy-GOx/P-o-PDA Biosensor
• May be Related to Better Retention of GOx in Pt/PPy-GOx/P-o-PDA Bilayer

and the Nature of Polymer Closest to the Sensing Medium
• Best Potentiometric Response for Glucose and Minimum Ascorbic Acid

Interference was Obtained with a Pt/PPy-GOx/P-o-PDA Bilayer Arrangement
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Amperometric Response of PPy-GOx/P-o-PDA
Bilayer Biosensor

• Amperometric Response was Less During Stirring than in Stagnant Solution
• Convectional Diffusion of Glucose to the Surface is Not a Limiting Step of

Electrode Process, Otherwise Response Should Increase in Proportion to the
Stirring Rate

• Increase in Solution Stirring Increases Transport of H2O2 from Film to
Solution and, Hence, Lowers [H2O2] at Electrode Surface, Resulting in Less
Current Response
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Analysis of Amperometric Response
• According to Lineweaver-Burke Equation:

1/i = (Km/imax)(1/C) + 1/imax

• Plot of 1/i vs 1/Cglucose Should Give Straight Line with a Slope Equal to (Km/imax)
and Intercept Equal to (1/imax)

• From this, Achievable imax is Higher for Stagnant Solution (56 mA/cm2) than for
Stirred Solution (33 mA/cm2); Consistent with the Associated Transport
Processes

• However, Michaelis Constant (Km) is Less for Stagnant Solutions (27 mM)
Compared with Stirred Solutions (34 mM)

• Both were Much Higher than for Non-Immobilised GOx (usually about 7 mM)

• Explained by the Fact that the Lineweaver-Burke Equation is True for Rate of
Catalytically Controlled Enzymatic Reaction

• For Stagnant Solution the Enzymatic Reaction may be Partly Mass Transport
Controlled (Mixed Kinetics), So Calculated Km from Slope will only be "Effective
Km", Rather than True Km
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Stability of Potentiometric Detection of Glucose
with PPy-GOx/P-o-PDA

• Bilayer Arrangement Gave Good Response to Glucose, Experienced
Little or No Interference from Ascorbic Acid and Maintained High
Stability over 70 days
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GOx Activity in Solution and PPy-GOx/o-PDA
Bilayer

• Measurement of GOx Activity in Solution Reveals its Maximum Activity at pH
~5.5 and was Nearly Completely Inactivated at pH 8.8

• Activity of Immobilised GOx in Pt/PPy-GOx/P-o-PDA Shows its Maximum
Activity at pH ~ 8 and was Still Active (~ 25 % of Maximum) at pH ~ 10

• Evidently Immobilisation of GOx into PPy Film Results in Improved
Stabilization and Extended Lifetime of the Biosensor
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Conclusions
• Formation of P-oPDA Film Over PPy-GOx Layer Provided

a Versatile Approach for Removal of Ascorbic Acid
Interference on Glucose Detection

• Stirring of Solution (Hydrodynamics) Enhanced
Potentiometric Response, but Decreased Amperometric
Response due to Diffusion of H2O2 from Surface into
Solution

• Additional P-oPDA Layer Improved the Containment and
Retention of GOx

• Stability and Activity of GOx in the Bilayer Arrangement
was Improved and Extended from pH 8.8 to pH 10.0
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