MONASH University

ICNT, San Francisco, Nov 2 2005

Nanocomposite Polypyrrole-Glucose Oxidase/Poly-ortho-Phenylenediamine Bilayer Biosensor for Detection of Glucose

> Samuel B. Adeloju Water and Sensor Research Group Monash University, Victoria, Australia

www.monash.edu.au

Overview

- Introduction
- Ascorbic Acid Interference on Glucose Detection
- Aims of Study Use of NanoLayers for Biosensing
- Layer by Layer Growth of PPy-GOx/P-oPDA Films
- Stability and Sensitivity of PPy-GOx/P-oPDA Electrode Response
- Stability of GOx in PPy-GOx/P-oPDA Bilayer Arrangement

Commonly Used Conducting Polymers

Figure Chemical structure of some polymers which become electrically conducting after doping. An important feature is the extended domain of conjugated double bonds.

www.monash.edu.a&

Useful Properties of Conducting Polymers

Polymer	Conductivity (S cm ⁻¹)	
	Dedoped Form	Doped Form
cis-Polyacetylene	10-7	$10^{-3} - 10^4$
trans-Polyacetylene	10-4	10 ⁻³ - 10 ⁴
Polypyrrole	10-10	$10^2 - 10^3$
Polythiophene	10-10	$10^2 - 10^3$
Polyparaphenylene	10-12	5×10^2
Polyparaphenylene Sulphide	10-12	5×10^2

Conductivities of Conducting Polymers

www.monash.edu.ad

Electropolymerization of Pyrrole

Mechanism for polypyrrole formation.

(a) Oxidation of monomer. (b) Radical-radical coupling. (c) Radicalmonomer. (d) Oxidation of dimer radical. (e) Aromatisation. (f) Propagation to form polymer.

www.monash.edu.aษ์

Benefits of Electropolymerization of Pyrrole for Enzyme Immobilization

- Enzyme Immobilization by Entrapment in Conducting Polymers is One of The Simplest, Quick and Most Attractive Methods for Fabrication of Biosensors
- Use of Polypyrrole Has Gained Much Interest in this Area because of the Ability to Form in Aqueous Solutions
- Polypyrrole is the Most Ideal Conducting Polymer Easily Polymerised at Low Anodic Potentials from Aqueous Solutions
- Provides Excellent Sensing Medium for Detection of Various Catalytic Products

www.monash.edu.a@

Electroimmobilization of Enzyme in Polypyrrole Film by Entrapment

- Used in this Study to Entrap Glucose Oxidase in 55 nm Thick PPy Film
- Measured Glucose by Detecting H₂O₂ Generated by Potentiometry or Amperometry

www.monash.edu.ad

Interference of Ascorbic Acid on Glucose Measurement with PPy-GOx Electrode

- Fabricate a Nanometer Thick Polypyrrole-GOx Single Layer Electrode
- Gave "Super" Nernstian Response (up to 100 mV per Decade) for Potentiometric Detection of Glucose
- Detect as Little as 10 µM Glucose
- Performance was Affected by Presence of Ascorbic Acid, Resulting in Enhancement of Glucose Response
- Need for a Strategy to Reduce or Eliminate Ascorbic Acid Interferences to Attain Optimum Performance
- Consider Use of Non-Conducting (Insulating) P-o-PDA Film as an Additional Layer over the PPy-GOx Layer
- P-o-PDA Film can be Readily Permeated by Protons, but Not by Large Molecules

Aims of Study

- Develop Strategy for Growing Non-Conducting Poly-ortho-Phenylenediamine (P-o-PDA) Film on Conducting Polypyrrole-Glucose Oxidase Film
- Investigate the Effectiveness of the Use of Polyortho-Phenylenediamine (P-o-PDA) Film for Removing Ascorbic Acid Interference from Glucose Determination
- Study the Effects of Hydrodynamics on Potentiometric and Amperometric Biosensing of Glucose with the Bilayer Electrode

www.monash.edu.au

Strategy for Layer by Layer Electrochemical Fabrication of Composite Biosensors

Electropolymerisation of o-PDA in KCI

- 1st Peak Current Magnitude is Directly Proportional to Square Root of Scan Rate and is Associated with o-PDA Oxidation
- 2nd Peak Current is Independent of Scan Rate and Attributed to the PolymerisationProcess

www.monash.edu.au

Electropolymerisation of o-PDA in Phosphate Buffer

- Anodic Peak Currents Decreased Significantly with Repeated Cycle
- Current Magnitudes were Lower than in Chloride Solution, Possibly Due to Difference in Electroconductivity of the P-o-PDA films in the different Media
- Chosen as it Enabled Better Regulation of Film Thickness at Low Current Magnitude

Permeability of P-o-PDA Film by H₂O₂

- P-o-PDA Films are Highly Permeable to H₂O₂ as Evident with Different Thickness
- Response Decreased with Increased Film Thickness
- Use of P-o-PDA as an Outer Layer in a Bilayer Arrangement will Enable Adequate Detection of Glucose via its Catalytic Product (H₂O₂)

Permeability of PPy-GOx/P-o-PDA Bilayer by Ascorbic Acid

- Bilayer Arrangement of Pt/PPy-GOx/P-o-PDA Eliminate Ascorbic Acid Interference
- Use of Pt/P-o-PDA-GOx Electrode Gave Low Sensitivity (27 mV/dec) and Long Response Time for Potentiometric Sensing of Glucose
- Use of a Pt/PPy-P-o-PDA-GOx Electrode (Q = 30mC/cm2) Gave High Sensitivity (84 mV/dec); Ascorbic Acid Interference as for Pt/PPy(0.1M)-GOx Electrode

Potentiometric Response of PPy-GOx/P-o-PDA Bilayer Biosensor

- Gave Very Sensitive Potentiometric Response to Glucose (about 100 mV/dec) and Not Affected by Ascorbic Acid and was Highly Stable with Time
- Significantly Influenced by Hydrodynamic Conditions (Electrolyte Stirring Rate)
- Responses in Stirred Solutions (Δ)were More Sensitive than in Stagnant Solutions (x)

Potentiometric Response of P-o-PDA/PPy-GOx Bilayer Biosensor

- Less Sensitive Responses than Obtained with Pt/PPy-GOx/P-o-PDA Biosensor
- May be Related to Better Retention of GOx in Pt/PPy-GOx/P-o-PDA Bilayer and the Nature of Polymer Closest to the Sensing Medium
- Best Potentiometric Response for Glucose and Minimum Ascorbic Acid Interference was Obtained with a Pt/PPy-GOx/P-o-PDA Bilayer Arrangement

Amperometric Response of PPy-GOx/P-o-PDA Bilayer Biosensor

- Amperometric Response was Less During Stirring than in Stagnant Solution
- Convectional Diffusion of Glucose to the Surface is Not a Limiting Step of Electrode Process, Otherwise Response Should Increase in Proportion to the Stirring Rate
- Increase in Solution Stirring Increases Transport of H₂O₂ from Film to Solution and, Hence, Lowers [H₂O₂] at Electrode Surface, Resulting in Less Current Response

Analysis of Amperometric Response

• According to Lineweaver-Burke Equation:

 $1/i = (K_m/i_{max})(1/C) + 1/i_{max}$

- Plot of 1/i vs 1/Cglucose Should Give Straight Line with a Slope Equal to (K_m/i_{max}) and Intercept Equal to $(1/i_{max})$
- From this, Achievable imax is Higher for Stagnant Solution (56 mA/cm²) than for Stirred Solution (33 mA/cm²); Consistent with the Associated Transport Processes
- However, Michaelis Constant (K_m) is Less for Stagnant Solutions (27 mM) Compared with Stirred Solutions (34 mM)
- Both were Much Higher than for Non-Immobilised GOx (usually about 7 mM)
- Explained by the Fact that the Lineweaver-Burke Equation is True for Rate of Catalytically Controlled Enzymatic Reaction
- For Stagnant Solution the Enzymatic Reaction may be Partly Mass Transport Controlled (Mixed Kinetics), So Calculated Km from Slope will only be "Effective K_m", Rather than True K_m

Stability of Potentiometric Detection of Glucose with PPy-GOx/P-o-PDA

 Bilayer Arrangement Gave Good Response to Glucose, Experienced Little or No Interference from Ascorbic Acid and Maintained High Stability over 70 days

GOx Activity in Solution and PPy-GOx/o-PDA Bilayer

- Measurement of GOx Activity in Solution Reveals its Maximum Activity at pH ~5.5 and was Nearly Completely Inactivated at pH 8.8
- Activity of Immobilised GOx in Pt/PPy-GOx/P-o-PDA Shows its Maximum Activity at pH ~ 8 and was Still Active (~ 25 % of Maximum) at pH ~ 10
- Evidently Immobilisation of GOx into PPy Film Results in Improved Stabilization and Extended Lifetime of the Biosensor

www.monash.edu.a

Conclusions

- Formation of P-oPDA Film Over PPy-GOx Layer Provided a Versatile Approach for Removal of Ascorbic Acid Interference on Glucose Detection
- Stirring of Solution (Hydrodynamics) Enhanced Potentiometric Response, but Decreased Amperometric Response due to Diffusion of H₂O₂ from Surface into Solution
- Additional P-oPDA Layer Improved the Containment and Retention of GOx
- Stability and Activity of GOx in the Bilayer Arrangement was Improved and Extended from pH 8.8 to pH 10.0

• ARC for Research Grants

- Monash and UWS for Research Support
- Research Associates and Ph.D Students
- Partial Travel Support to Conference by Nanotechnology Victoria

