Effect of Metal-doping of Nanoscale Maghemite on Cr(VI) Adsorption and Nanoparticle Dissolution

Jing Hu, Irene M. C. Lo and Guohua Chen

Environmental Engineering Program Hong Kong University of Science and Technology

Presented at the International Congress of Nanotechnology, October 31-November 3, 2005 San Francisco

Outline

- Introduction
- Objectives
- Methodology
- Results and Discussions
- Conclusions

Introduction

Hexavalent chromium, Cr(VI): Highly toxic but valuable Priority pollutants defined by USEPA Electroplating, acid mining, refining, petroleum plants

Technologies for heavy metal treatment

Chemical precipitation

- High equipment costs
- Large consumption of reagents
- Large volume of sludge
- Ineffective recovery of treated metals
- Potential hazard to environment

Ion exchange

- High capital and operating cost
- Fouling
- Pretreatment

Activated carbon adsorption

- Large intraparticle diffusion
- High regeneration cost
- Low regeneration efficiency

Magnetic nanoparticle adsorption

Advantages	Implications for industrial applications
Comparatively large adsorption capacity	Superior removal
Very short adsorption time	Saved space, especially suitable for crowded cities
Easy to separate from treated water	Lower capital and operating costs
Simple to desorb	Easy technical adaptation and maintenance
No secondary pollution	No potential environmental concern

Maghemite nanoparticles for Cr(VI) removal

Cr(VI) adsorption equilibrium time = 10 min; 50 mg/L of Cr(VI) was reduced to be 0.05 mg/L, below discharge limit

How to enhance adsorption?

1. Metal-doping technique

- Increase in surface area or active sites
- Simple modification method
- Other parameters not impaired significantly, e.g., adsorption rate, magnetic properties
- Stable nanoparticles

2. Inorganic coating technique

Promotion of adsorption by metal-doping
Inhibition of dissolution by metal-doping
Mechanism studies by Raman spectroscopy

Materials and Methods

Adsorbent

Metal-doped γ -Fe₂O₃ nanoparticle (Me= AI, Mg, Cu, Zn, Ni)

Adsorbate

100 mg/L K₂CrO₄ + 0.1 M NaNO₃

Batch test

Experimental conditions: contact time: 60 min; pH: 2.5; shaking rate: 200 rpm; room temperature: 25°C

Mechanism study

Sample for Raman: 5, 50, 100 mg/L Cr(VI) at pH 2.5, 6.5, 8.5

Analytical Methods

Parameters	Analytical methods
Cr	ICP
рН	pH Meter
Zeta potential	ZETA PLUS
Particle dimension	TEM
Particle structure	XRD
Elemental analysis	XRF
Complexation	Raman spectroscopy
Surface area	BET Analyzer
Magnetism	VSM

Raman spectroscopic studies

Establish symmetry of surface species
Distinguish inner-sphere from outer-sphere
(David et al., 1978; Tejedor and Anderson, 1990)

Raman spectroscopic data about PO₄³⁻, CO₃²⁻, SeO₄²⁻, SO₄²⁻, and AsO₄²⁻ adsorption onto Fe/AI oxides available

(Schulthess and McCarthy, 1990; Su and Suarez, 1998; Wijnja and Cristian, 2000; Goldberg and Johnston, 2001)

Little detailed information on Raman spectroscopic study of CrO₄²⁻ adsorption onto (modified) iron oxide

Modification of synthesizing methods

Precipitation method

Sol-gel method

Nanoparticle Synthesis Method (sol-gel)

netite (Fe_3O_4) Al-doped maghemite (γ - Fe_2O_3)

Al-doped magnetite (Fe₃O₄)

TEM images of Al-doped γ -Fe₂O₃

Undoped γ-Fe₂O₃

Al-doped γ -Fe₂O₃ with 7.5% of Al

Al-doped γ -Fe₂O₃ with 13.1% of Al

Doping of AI results in preferential crystal growth along [100] direction producing irregular shaped, platy particles, at expense of crystal thickness (Schulze, 1984)

XRD patterns of undoped & Al-doped γ-Fe₂O₃

A definite proof of structural incorporation can be produced from a shift in position of XRD peaks, but doping would not change original structure

Hysteresis loops of Al-doped γ-Fe₂O₃

Magnetic properties decreased with increasing AI dosage

Effect of doped metal on Cr(VI) adsorption

Metal-dopant maghemite

Al-, Cu- and Mg- doping enhanced adsorption capacity; while Cuand Ni-doping decreased adsorption capacity of previous γ-Fe₂O₃

Adsorption and separation

Al/(Al+Fe)	Surface area	Adsorption efficiency	Equilibrium time	Magnetic properties	Separation Time
(%)	(m²/g)	(%)	(min)	(emu)	(min)
0	162	79.8	10	3.48	0.1
7.5	182	84.3	25	2.26	0.5
9.3	191	86.7	30	1.78	1
11.0	198	87.5	60	1.14	5
13.1	210	88.9	90	Ι	10

Adsorption mechanism (Raman)

- Cr(VI) adsorption onto Al-doped γ -Fe₂O₃

Vibrations for the free CrO_4^{2-} are all Raman active: the nondegenerate v_1 at 848 cm⁻¹, the doubly degenerate v_2 at 342 cm⁻¹, the triply degenerate v_3 at 882 cm⁻¹, and the triply degenerate v_4 at 365 cm⁻¹

Raman spectra — Effect of pH

Raman spectra

— Effect of surface loading

Counts

Vibrations between CrO₄²⁻ and Al-doped γ-Fe₂O₃

<u>Crosica</u>	Cr(VI) (mg/L)	рН	Frequency (cm ⁻¹)				
Species			v ₁	v ₂	va	}	v ₄
K ₂ CrO ₄ (aq)			848	342	88	2	365
Al-doped γ-Fe ₂ O ₃	5	2.5	837	331	867	912	360
Al-doped γ-Fe ₂ O ₃	50	2.5	835	331	868	894	366
Al-doped γ-Fe ₂ O ₃	100	2.5	831	338	858 87	6 926	359 369
Al-doped γ-Fe ₂ O ₃	100	6.5	840	341	863	932	365
Al-doped γ-Fe ₂ O ₃	100	8.5	848	339	/		354

Inner-sphere complex between Cr(VI) and Al-doped γ-Fe₂O₃

(* Together with data from Hiemstra et al., 1989; McBride, 1994; Fendorf et al., 1997; Wijnja and Schuthess, 2000)

Adsorption isotherms

Comparison of adsorbents

Type of adsorbents	q _m (mg/g)	Equilibrium time (h)	Optimum pH	References
Coconut tree sawdust	3.46	3	3.0	(Selvi et al., 2001)
Lignin	5.64	24	2.5	(Lalvani et al, 2000)
Distillery sludge	5.7	1.75	3.0	(Selvaraj et al., 2003)
Blast-furnace slag	7.5	6	1.0	(Srivastava et al., 1997)
Diatomite	11.55	2	3.0	(Dantas et al., 2001)
Aluminum oxide	11.7	8	4.0	(Gupta et al., 1999)
Anatase	14.56	24	2.5	(Weng et al, 1997)
Activated carbon	15.47	3	4.0	(Sandhya and Tonni, 2004)
Beech sawdust	16.13	1.33	1.0	(Acar and Malkoc, 2004)
Hazelnut shell	17.7	5	2.0	(Cimino et al.,2000)
Spent grain	18.94	8	2.0	(Low et al., 2001)
Al-doped γ -Fe ₂ O ₃	22.68	0.5	2.5	Present study
Larch bark	31.25	48	3.0	(Aoyama and Tsuda, 2001)

Note: Cr(VI) Adsorption capacity and equilibrium time at room temperature of 22.5 ±2.5°C

Prevention of nanoparticle dissolution

AI-O bond energy (513 kJ mol⁻¹) > Fe-O bond energy (390 kJ mol⁻¹),
More energy to remove simultaneously two center atoms due to effect of binuclear complexes (Cornell et al., 2003)

Conclusions

Optimal AI dosage is 9.3 mol%

- Enhanced adsorption capacity from 19.4 mg/g to 22.7 mg/g by Al-doping
- Insignificant nanoparticle dissolution under experimental condition; Al-doping inhibited dissolution by 30%
- Complexation changed from outer-sphere into inner-sphere complexation by Al-doping

