

Manufacturing of Polymeric Nanomaterials for Biomedical applications

Yvon Durant Advanced Polymer Laboratory Nanostructured Polymer Research Center

Presented at the International Congress of Nanotechnology- October 31-November 3, 2005 San Francisco

Why are polymer well suited for nanoscale manufacturing ?

- Assume a block copolymer PEG-PGLA 55K-b-45K
 - Random coil size = $Rg = l(n_a)^{0.5}$ with l=0.2nm
 - Density of PGLA = 1.1 g/cm^3
- PGLA assembled in a 10nm "dry" core
- Number of chains/particle, $n = \pi D^3/6 * \rho / m.A$
- N= $3.14*(10E-7)^{3}/6*1.1/45000*6.02E23=8$ chains
- $\text{Rg} = l(n_a)^{0.5} = 0.2*((55000)/44)^{0.5} = 0.2*(1250)^{0.5} = 7\text{nm}$
- D=10+7*2=24nm

Polymeric Nanoparticles synthesis processes

- Mini-emulsion Polymerization
- Self assembly
- Directed assembly
- Application to biotechnologies
 - liposomes for transmembrane delivery
 - biosensors by molecularly imprinted polymers
 - Drug delivery

S	li	d	e	6

ygd1 Yvon Durant, 1/28/2002

- Create a meta-stable emulsion of the monomer(s).
- Use 2 key elements :
 - High shear source to break large droplets
 - Sonicator
 - Microfluidizer
 - Homogeneizer
 - Use a water insoluble molecule to stabilize the particle
 - Sometimes called cosurfactant (missleading)
 - Hexadecane, Eicosane, polymer, macromonomer, macroinitiator, CTA, ...

Particle size control

K. Landfester, N. Bechthold, F. Tiarks, and M. Antonietti, *Miniemulsion Polymerization with Cationic and Nonionic Surfactants: A Very Efficient Use of Surfactants for Heterophase Polymerization.* Macromolecules **1999**, *32*, 2679.

Mini to micro emulsion

K. Landfester, *Recent Developments in Miniemulsions - Formation and Stability Mechanisms*. Macromol. Symp. **2000**, *150*, 171.

Encapsulation of magnetite in polymer particles by miniemulsion

J. Phys.: Condens. Matter 15 (2003) S1345-S1361

- Polymeric Nanoparticles synthesis processes
 - Emulsion Polymerization
 - Mini-emulsion Polymerization
 - Self assembly
 - Directed assembly
- Application to biotechnologies
 - biosensors by molecularly imprinted polymers
 - liposomes for transmembrane delivery
 - Bypassing the BBB

- 2. Self-assembly of template molecule and functional monomers
- 3. Polymerization
- Analyte Extraction 4.

Adsorption studies by HPLC

Caffeine adsorption isotherm

A chemical sensor selectively recognizes a target analyte molecule in a complex matrix and gives an output signal which correlates with the concentration of the analyte.

The transducer: When the analyte interacts with the recognition element of a sensor, there is a change in one or more physicochemical parameters associated with the interaction. Transducer convert these parameters into an electrical output signal than can be amplified, processed and displayed in a suitable form.

 \Rightarrow Molecular imprinting use as sensing materials

Advantage: cheap, stable and robust under a wide range of conditions including pH, humidity and temperature

Problem: Signal transduction is so low that it seem to be environmental artifacts. Due to the insulating nature of the polymer constituting the MIP

Biomimetic electrochemical sensors based on molecular imprinting / Chap.18 MIP – D. Kriz, R. J. Ansell- Vol 23 - Elsevier

• A QCM consists of a thin quartz disc sandwiched between a pair of electrodes. Due to the piezoelectric properties of quartz, it is possible to excite the crystal to oscillation by applying an AC voltage across its electrodes.

Quartz crystal - The heart of the QCM

 Δf = -f_u^{2/3} [(\rho_L \eta_L) / (\pi \times (\rho_q \mu_q)]^{\frac{1}{2}}, \ where

 Δf = measured frequency shift,

- f_u = resonant frequency of the unloaded crystal,
- ρ_L = density of liquid in contact with the crystal,
- η_L = viscosity of liquid in contact with the crystal,
- ρ_q = density of quartz, 2.648 g/cm³,

 μ_q = shear modulus of quartz, 2.947×10¹¹ g/cm×s².

Coated QCM sensor Fracture SEM

Raw data

QCM results

Adsorption of caffeine at different caffeine solution concentrations

With the Langmuir equation the quantity adsorbed can be calculated for the caffeine MIP at a concentration of 0.0005g/L. This value is found to be equal to 7.3×10 -6g of caffeine per gram of MIP. The mass of MIP on the crystal is equal to 4×10 -5g. With these two values, the minimum amount detected in this experiment was equal to 0.3nanogram.

SINP : Guanosine detection

Precipitation Polymerization in ACN

UNIVERSITY of NEW HAMPSHIRE

- Smaller...
- 20nm
- Higher sensitivity

<u>1</u> μm

43 Water

QCM200

Polymeric Nanoparticles synthesis processes

- Emulsion Polymerization
- Mini-emulsion Polymerization
- Self assembly
- Directed assembly

• Application to biotechnologies

- biosensors by molecularly imprinted polymers
- liposomes for transmembrane delivery
- Drug delivery

Properties of the vesicles

- White / translucent liquid (nanosize)
- Does not contain any solid in suspension
- Has the viscosity of water

Polymeric Nanoparticles synthesis processes

- Emulsion Polymerization
- Mini-emulsion Polymerization
- Micro-emulsion Polymerization
- Self assembly
- Directed assembly
- Application to biotechnologies
 - biosensors by molecularly imprinted polymers
 - liposomes for transmembrane delivery
 - Drug delivery

Liposomes

http://www.avantilipids.com/PreparationOfLiposomes.html

Multi Lamellar Vesicles

Large Unilamellar Vesicles : LUV

Unilamellar Vesicles

DPPC liposome size distribution after extrusion through a 400 nm polycarbonate membrane filter.

Negatively-stained TEM

Can be VERY monodispersed

Acknowledgements

- Julien Ogier, Marine Barasc, Romuald Couronne
- Dr. Zhengmao Li
- Pr. Jerome Claverie, Floraine Collette, Sayantan Roy
- Funding : NOAA, Bentley Pharmaceuticals, NSF, DOT

Microemulsion

Recipe MJB-10: microemulsion (seed)

Water	82.84%
NaHCO3	0.043%
Na2O5S2	0.011%
SDS	8.27%
KPS	0.17%
Styrene	8.67%

Water, Salts, SDS, stirred, degassed. Add 20% of styrene. Heat. When at 80C, add KPS. Let react for 20 minutes. Start feeding with styrene, over 2 hours. 30 minutes of Post polymerization.

SCexp = 15.1% Conversion = 77.47% Size = CHDF:

Dv = 35.5 nm, Dn = 33.2 nm

Nanotrac: Dv = 36.8 nm, Dn = 25.13 nm

