

Critical issues in Ge/Si nanostructures: intermixing and ripening

Stefano Fontana

Sincrotrone Trieste SCpA, Trieste, Italy

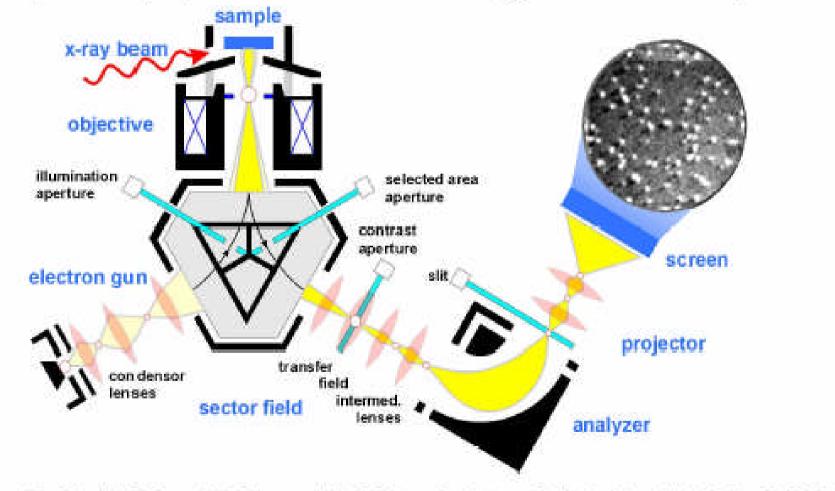
(at present: European Commission, DG-RTD, Brussels, Belgium)

stefano.fontana@cec.eu.int

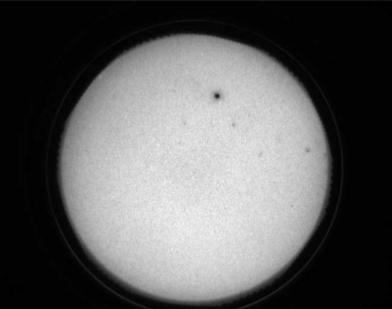
The team:

- Fulvio Ratto, Federico Rosei (INRS, Canada)
- Stefan Heun (TASC-INFM, Italy)
- Andrea Locatelli (Sincrotrone Trieste, Italy)
- Salia Cherifi (CNRS Grenoble, France)
- Nunzio Motta (Univ. Roma 3, Italy)
- Maurizio De Crescenzi, Anna Sgarlata, Pierre David Szkutznik (Univ. Roma 2, Italy)
- Sharmin Kharrazi, Shrivas Ashtaputre,
 Sulabha K. Kulkarni (University of Pune, India)

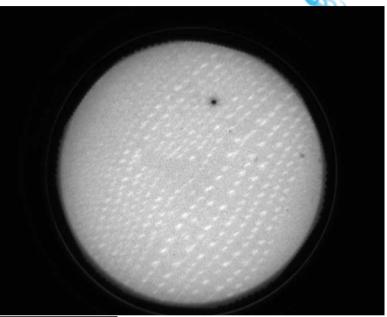
Open problems[†]:


- Alloying: exact composition of WL and islands
- Growth Instabilities: Island evolution and ripening
- Substrate-island interactions (depletion-erosion)
- Island positioning by control of self—assembly

[†]Note: several other groups are studying the growth of Ge on Si(001) (IBM, HP, Max Planck, U Wisconsin (Madison), Rome3, NTT, U Virginia, Sandia NL, etc.), which is more promising for applications since the (001) surface of Si is widely used in industry


The SPELEEM at ELETTRA

Spectroscopic photoemission and low energy electron microscope



S. Heun, Th. Schmidt, B. Ressel, E. Bauer, and K. C. Prince: Synchrotron Radiation News Vol. 12, No. 5 (1999) 25.

Online crystal growth by LEEM

T = 430 ° C T = 530 ° C

T = 560 ° C

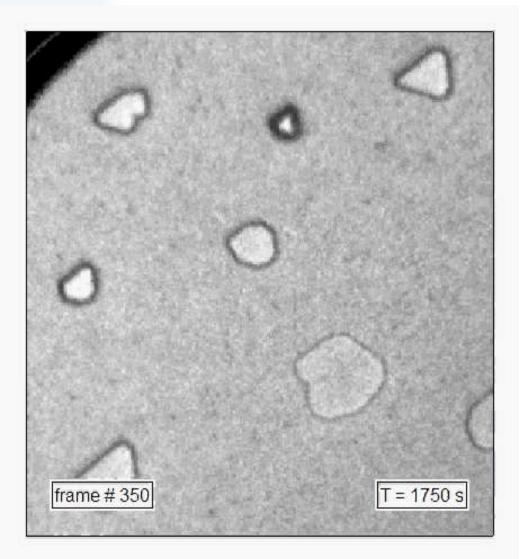
8 ML Ge on Si(111)

LEEM Movies: Fov 10 µm

- As Ge is deposited, the reflectivity changes

- When the Wetting Layer is Complete, 3 D islands nucleate randomly ICNT 2005

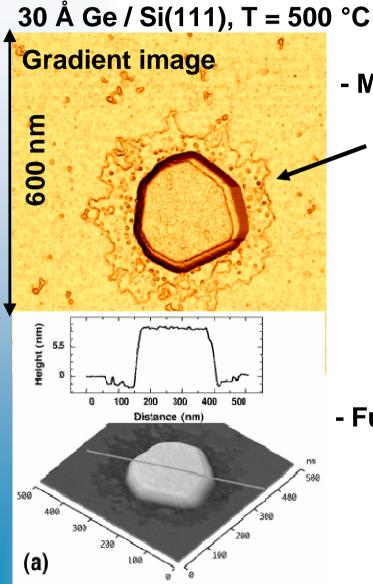
Growth instability


 Metastability of Ge/Si islands upon annealing: island evolution and ripening
 _____8 ML Ge

8 ML Ge on Si(111) **LEEM Movie:** post-deposition annealing to 550° C **Bottom right:** an unstable island "melts" **Upper left:** an island nucleates, then is divided in 2 **FoV:** ~5 μm

Island instability: super-islands

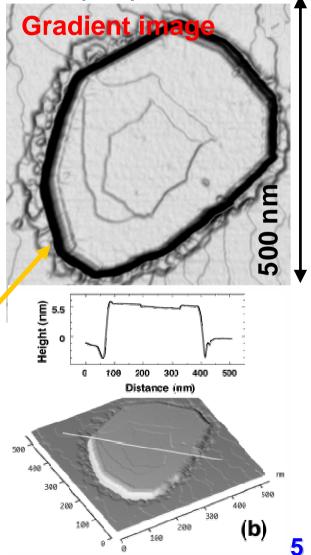
8 ML Ge on Si(111) at 550 ° C


LEEM Movie: post-deposition annealing to 700 ° C

Several islands "melt" **Upper right: formation of** a super-island

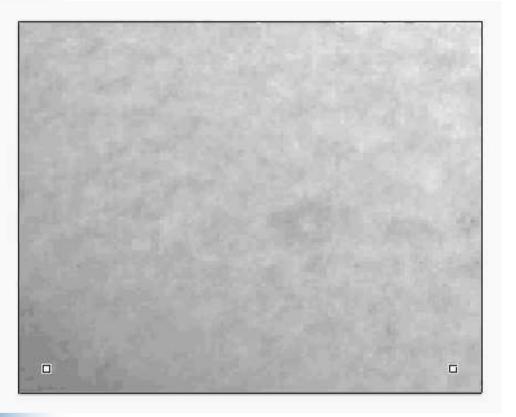
FoV: ~1×1 μm²

Ge/Si(111): island ripening


- Main features:

- Ripening effect:
 island is
 rounded
- Substrate erosion: formation of a trench around the island.

- Full Ripening:


- Atoll–like shape: formation of a central hole
 - Substrate erosion

20 Å Ge / Si(111), T = 550 °C

Ge/Si(111): island evolution

Ge on Si(111) LEEM Movie: post-deposition annealing to 550 ° C (0.2 ML/min)

At the beginning the island is triangularshaped, then looses simmetry and become atoll-like

FoV: ~2.2×2.2 μm²

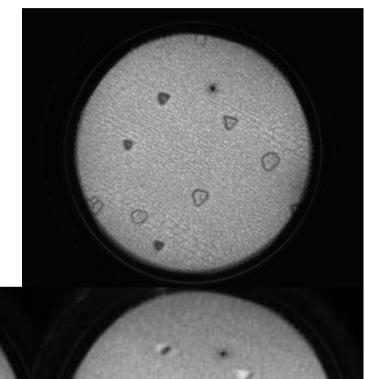
from 3 to 10 ML

elettra

Ge/Si(111): <u>composition of a single 3D island</u>

- Substrate + Island morphology: STM
- Dynamics of the islands morphology: LEEM
- Open question: what is the composition of a single 3 D island?
- Answer: combine spatial resolution with chemical contrast
 - => X–Ray Microscopy using Synchrotron Radiation (XPEEM)

Nanospectroscopy:



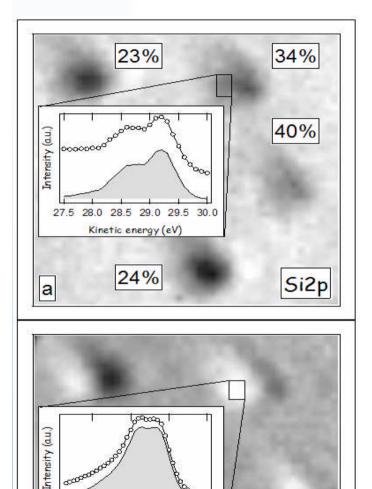
a microscopy technique with chemical contrast

5 ML Ge on Si(111), T = 450 $^{\circ}$ C

XPEEM: X–Ray Photoemission Electron Microscopy

in essence, it means
 photoelectron spectroscopy
 with 40–50 nm spatial resolution

LEEM: 2.5 μm FoV


XPEEM: Ge 3d

ICNT 2005

XPEEM: Si 2p

Composition of single 3 D islands

106

Ge3d

105

103

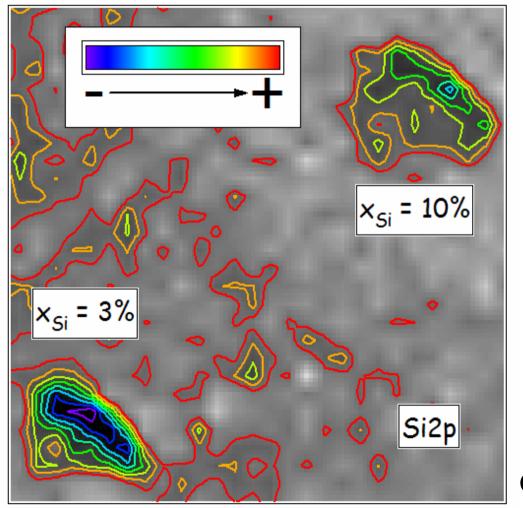
b

104

Kinetic energy (eV)

- 4×4 µm² integrated XPEEM images taken at:
- a) the Si2p core level peak and
- b) the Ge3d core level. Spectra are shown in the insets.

The micrographs are obtained by integrating the spectra with ~25 nm lateral resolution.

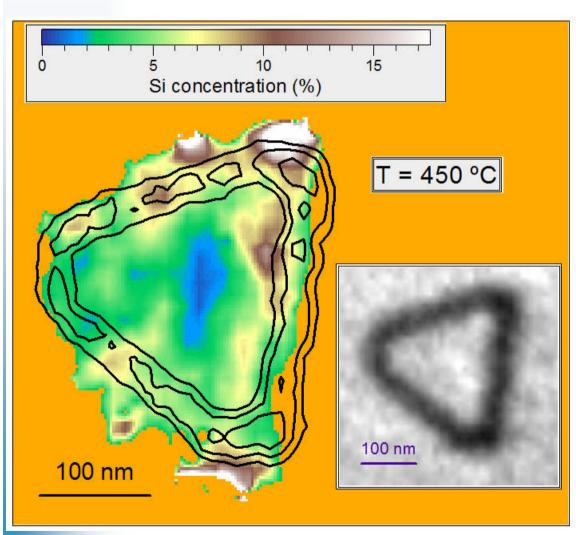

X–Ray photon energy: 130.5 eV

Growth at T = 560 °C

F. Ratto, F. Rosei et al., Appl. Phys. Lett. 84, 4526 (2004)

Intensity contour maps of 3 D islands

$2 \times 2 \ \mu m^2$ Si2p core level integrated XPEEM image



- Intensity contour maps of a more (top) and a less (bottom) ripened island.
- Photoelectron yields are increasing from blue (lowest) to red (highest).
- Darkest regions: shadows of the 3 D islands, due to the 16° X–Ray incidence angle.
- The WL is highly inhomogeneous.

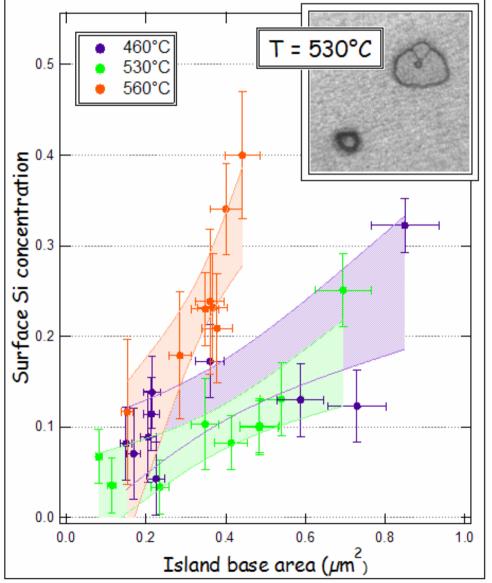
Growth at T = 530 °C

F. Ratto, F. Rosei et al., Appl. Phys. Lett. 84, 4526 (2004)

Composition mapping of individual Ge/Si islands

Relative Si surface concentration in a Ge(Si) island on Si(111).

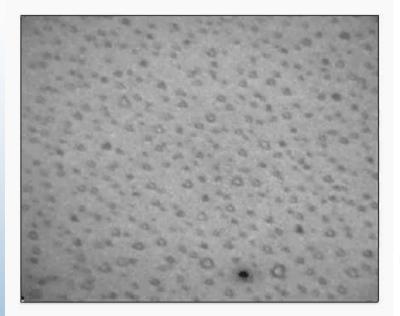
The composition mapping is obtained by combining sequences of Si2p and Ge3d XPEEM micrographs with a lateral resolution of ~30 nm.


Inset: LEEM image of the same 3D structure (~10 nm lateral resolution).

10 MLs Ge Rate: 0.2 MLs/s T = 450 $^{\circ}$ C.

Island height: about 25 nm

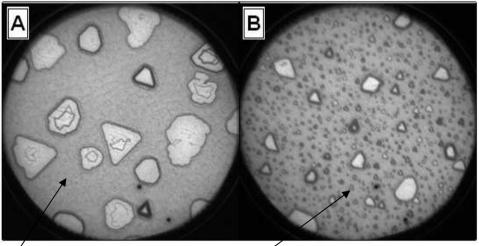
Si concentration vs. island morphology



Si surface concentration as a function of island base area.

 At each deposition temperature, the stoichiometry is uniquely determined by the island's lateral dimensions.

Two-steps growth



Two-steps growth: the WL was deposited at low temperature \sim 300 $^{\circ}$ C (1st step) and the 3D islands were grown afterwards at relatively high temperature \sim 450 $^{\circ}$ C (2nd step).

the 3D islands grown by the two-steps process are morphologically remarkably different from those observed after the one-step growth 0.2 ML per minute

> 5 x 5 um² LEEM image of a surface prepared by depositing 10 ML Ge on Si(111) at 450 °C

5 x 5 um² LEEM micrograph of a surface resulting from the two-steps growth procedure: 3 ML Ge at 300 °C followed by 7 ML Ge at 450 °C.

Conclusions and Perspectives

- Using naturally patterned substrates, we observed island positioning on step-bunched Si(111) surfaces
- We have observed by acquiring LEEM "movies"

 growth instabilities that appear during post– deposition annealing of Ge nanostructures on Si(111)
- By means of Nanospectroscopy, or XPEEM, we can determine the *composition mapping* of *individual* 3 D Ge islands on a Si substrate
- => by controlling Ge/Si alloying, it will be possible to control island size and other properties