Developing Raman spectroscopy as a clinical diagnostic tool for hemoglobin disorders

Kevin C. Hewitt, Joel St. Aubin & Chelsea Nisbett

Dalhousie University Department of Physics and Atmospheric Science Halifax, NS Canada B3H 3J5

International Conference of Nanotechnology, Nov. 1, 2005 San Francisco, CA USA

Outline

Motivation

- Hemoglobinopathies, e.g. Sickle cell disease (HbS)
- Raman spectra of amino acids
 - L-Glutamic Acid
 - L-Valine
- Raman Spectra of HbA and HbS
- Conclusions

Hemoglobin disorders

- Qualitative (e.g. amino acid substitutions) or quantitative (loss of portions of hemoglobin protein) changes in the oxygen-carrying protein hemoglobin (Hb)
- 75% of immigrant groups to Canada belong to at risk groups
- 270 million carriers worldwide
- Canadian Quality Management Program laboratory services survey (1990-2000) found "recurrent errors in diagnosis of carrier genotypes for serious hemoglobinopathies"
- A complementary technique is needed.
- Selectivity, sensitivity, cost, ease of use, turnaround time

Hemoglobinopathy, e.g. Sickle Cell disease

Sickle Cell Anemia

Oxygenated RBC with HbS looks normal but once deoxygenated it shows the characteristic sickle shape.

Single Amino acid substitution on both beta chains. Valine is hydrophobic while Glutamic Acid is hydrophilic.

Raman Spectroscopy

Why Raman scattering?

- Inelastic light scattering.
- Energy of the scattered photon changes due to its interaction with vibrational quanta (phonons) in the sample.
- Vibrational modes determined by mass, bond type, and symmetry of the atoms in the solid.
- Raman spectra gives molecular information -SPECTRAL FINGERPRINT of compound
- No special sample preparation necessary.

Raman Spectroscopy

Raman spectra – valine & glutamic acid

Conventional Raman spectra -HbA & HbS

Change of 2 in 574 amino acids (0.03%) not easily detected.

Surfaced Enhanced Raman Scattering (SERS)

- Enhancement in Raman signals obtained by adsorbing Au nanoparticles to site of interest.
- Plasmon resonance of Au nanoparticles create a large electric field.
- Plasmon resonance excitation wavelength can be found using UV-VIS of the Au nanoparticle.
- Plasmon resonance excitation wavelength depends on particle size and shape.

SERS - hydrophilic ligand (10⁻⁴ M)

Scan of

Hydrophilic

DALHOUSIE UNIVERSITY Inspiring Minds

SERS - hydrophilic ligand (10⁻⁴ M)

 $\int \mathbf{I}_{(971 \text{ cm}^{-1} \le \omega \le 1749 \text{ cm}^{-1})} \mathbf{d}\omega = \mathbf{R}$ $\int \mathbf{I}_{(171 \text{ cm}^{-1} \le \omega \le 1628 \text{ cm}^{-1})} \mathbf{d}\omega$

Wang et al. J. Am. Chem. Soc. 127, 14992 (2005)

Future experiment – SERS, HbS

HbS

Summary

- Observe clear differences in Raman spectra of valine and glutamic acid
- Observe very small differences in conventional Raman spectra of HbA and HbS
- Observe surface enhanced Raman spectroscopy of hydrophilic ligand adsorbed to gold nanoparticles -- at low concentrations
- Next step attach to hemoglobin

