Ab Initio Study of Hydrogen Storage on CNT

Zhiyong Zhang, Henry Liu, and KJ Cho Stanford University

Presented at the ICNT 2005, San Francisco

Financial Support: GCEP (Global Climate and Energy Project)

Rational Design of Hydrogen Storage Material

Figure 12. Reaction path for hydrogen evolving from different HSMs. (A) Thermodynamically very unstable HSM with low activation barrier and low T_{dec} , which stores hydrogen irreversibly. (B) Thermodynamically very stable HSM with high activation barrier and high T_{dec} , which stores hydrogen reversibly. (C) Thermodynamically slightly stable HSM with intermediate T_{dec} , which stores hydrogen irreversibly. (D) Target situation: catalytically enhanced thermodynamically slightly stable HSM with low T_{dec} , which stores hydrogen reversibly. Vertical arrows symbolize the activation barrier for the decomposition process.

- High Storage Capacity: 6.5 wt%, 65 g/L
- Desorption Temperature: 60~120 °C
- Thermodynamically slightly stable hydrogen storage systems are desired and can be achieved through material engineering.
- Reversibility dilemma: Reversibility is usually associated with highenergy barrier for dissociation and adsorption.
- Solution: Engineered catalyst can tune the energy barrier.

Multiscale *Design* of Nanomaterials for Hydrogen Storage

Chemisorption: $H_2 + NM \rightarrow NM-2H$

- H-H bond breaking = 4.5 eV
 - → poor reversibility (too strong bonding)
- + high surface coverage

? stability of NM-2H states

Physisorption: $H_2 + NM \rightarrow NM-H_2$

+ weak adsorption

 \rightarrow good reversibility

- small surface coverage (much less than a few wt. %)

Controlled Catalytic Chemisorption

+ high surface coverage & good reversibility

Experimental results

- Dillon et al., Nature, **386**, 377 (1997)
 - Room temperature, 300 torr, soot with 0.1 wt% SWNT
 - 0.01 wt% hydrogen adsorption, equivalent to 5~10 wt% on pure SWNT.
- Ye et al., Appl. Phys. Lett. **74**, 2307 (1997)
 - 80K, 100 bars, **pure sample**.
 - 8.25 wt% hydrogen adsorption.
- Liu et al., Science **286**, 1127 (1999)
 - Room temperature, 100 MPa, **pure sample.**
 - 4.2 wt% hydrogen adsorption.
- Chen et al., Science **285**, 91 (1999)
 - Ambient pressure, Li or K doped carbon nanotubes.
 - 14 ~ 20 wt% hydrogen adsorption. *FTIR show that* H_2 *is dissociative.* Other experiment suggests it is due to water adsorption.
 - Only 0.4 wt% hydrogen adsorption without doping.
- Nu⁻tzenadel et al., Electrochem. Solid-State Lett. **2**, 30 (1999)
 - 0.39 wt%, electrochemical hydrogen storage.

Controlled Hydrogen Bonding on Carbon Nanotubes

S. Park, D. Srivastava, and K. Cho, "Local reactivity of fullerenes and nano-device applications," Nanotechnology 12, 245 (2001).

Optimal Configurations of Adsorbed Hydrogen Pairs

Optimal Configurations of Adsorbed Hydrogen Pairs

Coverage Dependence of Binding Energy

The maximum chemi-sorption capacity is around 50% or less
Binding is very strong at low coverage.

Coverage Dependence of Binding Energy

- •The maximum coverage is around 75% with external binding.
- •The binding energies are in a narrow range of 0.4 eV ~ 0.6 eV (0.12 ~ 0.22 for GGA and PAW)

Absorption of Atomic Hydrogen on SWCNT

•Atomic source of H for hydrogenation.

- Diameter of SWCNT in the range of 1nm to 1,8 nm.
 65±15% (5.1±1.2wt%) of hydrogenation.
- •Stable in the temperature range of 300~600°C.

Experimental results, Dissociative H₂ Adsorption

Carbon Nanotube Sorption Science External Peer Review of NREL Activities, January 19-23, 2004

No hydrogen storage was observed in pure single-walled carbon nanotubes.Roughly 3 wt.% was measured in metal-doped nanotubes at room temperature.

H2 Dissociation on CNT

H2 Dissociation on N-Doped CNT

H Diffusion CNT

Conclusion

- The hydrogen biding energy strongly depends on the coverage on the CNT. Computational results indicate that the binding energies fall within a narrow range of energy in the most likely coverage pattern.
- We have identified the most likely dissociative adsorption pathway and studied the diffusion pathway of hydrogen on CNT.
- Computational results indicate that doping the CNT can substantially lower the dissociative adsorption pathway and thus improve the hydrogen storage kinetics.