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Introduction

Multi-dimensional and multi-physical problem in continuum me-

chanics for crystal growth process.

. Task : Simulation of a apparatus of a complex crystal growth

with heat- and temperature processes.

. Model-Problem : For the mathematical model we use coupled

diffusion-equations with 2 phases (gas and solid).

. Problems: Interface -Problems and material-parameters (different

material behaviors)

. Solution: Adapted material-functions and balance equations for

the interfaces.

. Methods: Implicit discretisations for the equations and nonlinear

solvers for the complex interface-functions.
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Motivation for the Crystal Growth

The applications are : Light-emitting diodes:

Blue laser: Its application in the DVD player

SiC sensors placed in car and engines

High qualified materials with homogene structures are claimed.
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Introduction to the model and the technical apparatus

SiC growth by physical vapor transport (PVT)

SiC-seed-crystal

Gas : 2000 – 3000 K

SiC-source-powder

insulated-graphite-crucible

coil for induction heating

polycrystalline SiC powder sublimates inside induction-heated graphite crucible at 2000 – 3000 K

and ≈ 20 hPa

a gas mixture consisting of Ar (inert gas), Si, SiC2, Si2C, . . . is created

an SiC single crystal grows on a cooled seed
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Problems of the technical apparatus

SiC growth by physical vapor transport (PVT)

Good crystal with

a perfect surface

But need of high energy

and apparatus costs

Bad crystal, with

wrong parameters for the heat

and temperature

optimization-problem

Solution : Technical simulation of the process and develop the optimal control of the process-

parameters.
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Coupling of the simpler models

• Heat conduction in gas, graphite, powder, crystal .

• Radiative heat transfer between cavities .

• Semi-transparent of crystal (band model) .

• Induction heat (Maxwell-equation) .

• Material-functions (complex material library) .

Further coupling with the next models

• Mass transport in gas, powder, graphite (Euler equation, porous media)

• Chemical transport in gas (reaction-diffusion)

• Crystal growth, sublimation of source powder,

decomposition of graphite (multiple free boundaries)
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Nonlinear heat conduction for the solid material (Solid-Phase)

ρjcj
sp ∂tT

j +∇ · ~qj = f j, (1)

~qj = −κj∇T j, (2)

j ∈ {1, . . . , N} solid materials, N number of solid materials ,

ρj: mass density,

cj
sp: specific heat, T j: absolute temperature,

~qj: heat flux, κj: thermal conductivity,

f j: power density of heat sources (induction heating).
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Nonlinear heat conduction for the gas material (Gas-Phase)

ρkzkR

Mk
∂tT

k +∇ · ~qk = 0, (3)

~qk = −κk∇T k, (4)

k ∈ {1, . . . ,M} gas materials, M number of gas materials ,

ρk: mass density,

zk: configuration number, R : universal gas constants,

Mk : molecular mass, T k: absolute temperature,

~qk: heat flux, κk: thermal conductivity .
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Magnetic scalar potential

The complex-valued magnetic scalar potential φ :

j =
{
−iω σ φ + σ vk

2πr (inside k-th ring),

−iω σ φ (other conductors).

Elliptic system of PDEs for φ:

In insulators: −νdiv · ∇(rφ)
r2 = 0.

In the k-th coil ring: −νdiv · ∇(rφ)
r2 + i ωσφ

r = σ vk
2πr2.

In other conductors: −νdiv · ∇(rφ)
r2 + i ωσφ

r = 0.
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Magnetic Boundary conditions

Interface condition:(νmaterial1

r2
∇(rφ)material1

)
· ~nmaterial1 (5)

=
(νmaterial2

r2
∇(rφ)material2

)
· ~nmaterial1 . (6)

Outer boundary condition: φ = 0.

ν: magnetic reluctivity, ~nmaterial1: outer unit normal of material1.
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Simulated phenomena

Axisymmetric heat source distribution

– Sinusoidal alternating voltage

– Correct voltage distribution to the coil rings

– Temperature-dependent electrical conductivity

Axisymmetric temperature distribution

– Heat conduction through gas phase and solid components of

growth apparatus

– Non-local radiative heat transport between surfaces of cavities

– Radiative heat transport through semi-transparent materials

– Convective heat transport
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Numerical models and methods

Induction heating:

– Determination of complex scalar magnetic potential from elliptic

partial differential equation

– Calculation of heat sources from potential

Temperature field:

– View factor calculation

– Band model of semi-transparency

– Solution of parabolic partial differential equation
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Discretization and implementation

Implicit Euler method in time

Finite volume method in space

– Constraint Delaunay triangulation of domain yields Voronoi cells

– Full up-winding for convection terms

– Very complicated nonlinear system of equations

– Solution by Newton’s method using Krylow subspace techniques

Implementation tools:

– Program package pdelib

– Grid generator Triangle

– Matrix solver Pardiso
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Discretization with finite Volumes and implicit Euler methods

Integral-formulation:∫
ωm

(U(Tn+1)− U(Tn))dx−
∫

∂ωm

κm∇Tn+1 · nds = 0 , (7)

where ωm is the cell of the node m and we use the following trial- and

test-functions :

Tn =
I∑

m=1

Tn
mφm(x) , (8)

with φi are the standard globally finite element basis functions. The

second expression is for the finite volumes with

T̂n =
I∑

m=1

Tn
mϕm(x) , (9)
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where ϕω are piecewise constant discontinuous functions defined by

ϕm(x) = 1 for x ∈ ωm and ϕm(x) = 0 otherwise. Domain ω is the

union of the cells ωm.
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Material Properties

For the gas-phase (Argon) we have the following parameters :

σc = 0.0

κ =

8>><>>:
1.839 10−4 T 0.8004 T ≤ 500K ,

−7.12 + 6.61 10−2 T − 2.44 10−4 T 2 + 4.49710−7T 3

−4.132 10−10 T 4 + 1.514 10−13 T 5 500K ≤ T ≤ 600K ,

4.194 10−4 T 0.671 600K ≥ T ,

For graphite felt insulation we have the functions :

σc = 2.45 102 + 9.82 10−2 T

ρ = 170.0 , µ = 1.0 , csp = 2100.0

κ =

8>><>>:
8.175 10−2 + 2.485 10−4 T T ≤ 1473K ,

−1.19 102 + 0.346 T − 3.99 10−5 T 2 + 2.28 10−8T 3

−6.45 10−11 T 4 + 7.25 10−15 T 5 1473K ≤ T ≤ 1873K ,

−0.7447 + 7.5 10−4 T 1873K ≥ T ,

Jürgen Geiser 17



Further Material Properties

For the Graphite we have the following functions :

σc = 1 104 ,

ε =

8>><>>:
0.67 T ≤ 1200K ,

3.752− 7.436 10−3 T + 6.416 10−6 T 2 − 2.33610−11T 3

−3.08 10−13 T 4 500K ≤ T ≤ 600K ,

4.194 10−4 T 0.671 600K ≥ T ,

ρ = 1750.0 , µ = 1.0 , csp = 1/(4.411102T−2.306 + 7.9710−4T−0.0665)

κ = 37.715 exp(−1.96 10−4 T )

For the SiC-Crystal we have the following functions :

σc = 105 , ε = 0.85 , ρ = 3140.0 , µ = 1.0

csp = 1/(3.91104 T−3.173 + 1.835 10−3 T−0.117) ,

κ = exp(9.892 + (2.498 102)/T − 0.844 ln(T ))

For the SiC-Powder we have the following functions :

σc = 100.0 , ε = 0.85 , ρ = 1700.0 , µ = 1.0 , csp = 1000.0 ,

κ = 1.452 10−2 + 5.47 10−12 T 3
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Numerical experiments

The numerical experiments are done with different material prop-

erties on a single computer.

The computational time for the finest case was about 2 h.

Level Nodes Cells relative L1-error Convergence rate

0 1513 2855

1 5852 11385 2.1 10−2

2 23017 45297 1.25 10−2 0.748

3 91290 181114 3.86 10−3 1.69

4 363587 724241 2.087 10−3 0.887

Table 1: The relative L1-error with the standard finite Volume method.
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Nonlinear heat conduction for the gas material (Gas-Phase)

t=100000 s
tstep=1e-05 s

Heat Source Field

height = 25 cm

radius = 8.4 cm

PowDens_min=0 W/m^3
PowDens_max=7.70727e+06 W/m^3

prescribed power = 10000 W
frequency = 10000 Hz

coil:
5 rings
top = 0.18 m
bottom = 0.02 m

|
0
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

3e+07 powDens[W/m^3]

500000 delta powDens[W/m^3] between isolines

heating power in crucible=7546.33 W
heating power in coil=2453.67 W
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Temperature-source

t=100000 s
tstep=1e-05 s

Transient Temperature Field

height = 25 cm

radius = 8.4 cm

T_min=500 K
T_max=1714.73 K
delTmax=0 K

prescribed power = 10000 W
frequency = 10000 Hz

coil:
5 rings
top = 0.18 m
bottom = 0.02 m

|
300
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

3300 T[K]

50 delta T[K] between isolines

heating power in crucible=7546.33 W
heating power in coil=2453.67 W

Jürgen Geiser 21



Conclusions and future works

. Adaptive methods, error estimates.

. Higher order methods.

. Mass transport in gas (Euler equation for the porous media).

. Chemical reaction in gas (diffusion-reaction-equation).

. Crystal growth (multiple free boundaries).
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