Active Transport by Biomolecular Motors: A New Tool for Nanotechnology

H. Hess, C. Brunner, J. Clemmens, K. H. Ernst, T. Nitta, S. Ramachandran, R.Tucker, D. Wu and V. Vogel

Dep. of Bioengineering, University of Washington, Seattle

Kinesin motor

Fuel: 1 ATP per stepForce: 5 pN per motorSpeed: 100 steps/s of 8 nm

Movie from Vale lab, UCSF

N. Hirokawa, Science **279**, 519 (1998)

Motor Proteins

Mitosis – coordinated movement, positional control

~10 µm

Smith College, Dept. of Biology website

Fast anterograde transport – transport of vesicles (D < 100 nm) through axons (D = 1 μ m)

1 µm

G.A. Smith et al., PNAS, 98,3466-3470

Application:

Diffusion: <∆x ² > = 2Dt	Active transport	Pressure-driven fluid flow: v ~ d ²
Intracellular transport - effective diffusion limits cell size	Mitosis	Large scale transport – cardiovascular system
	Fast anterograde transport	
Self-assembly – upper limit for lateral dimensions	Nanofluidics	Microfluidic devices – limit for channel diameter
	Guided assembly	
	Smart Materials	

Basic experimental setup: Inverted motility assay

J. Howard et al, Methods in Cell Biology 39 (1993) 137

Molecular Shuttles – a Nanoscale Transport System

Engineering challenges:

- Guiding along tracks
- Control of movement
- Loading and unloading

Photolithography + Detergent to prevent Protein adsorption
1 µm
silicon

Combination of surface chemistry and topography

Directional sorting is accomplished by track geometry

Time 50x

H. Hess et al.: "Ratchet patterns sort molecular shuttles", Appl. Phys. A 75, 309 (2002)

"Der Straßenbau" - 1929

Woodbridge, NJ - 1928

http://members.a1.net/wabweb/frames/kreuzf.htm

1916 – Patent on the "clover leaf"

Guiding: Complex track networks

J. Clemmens et al.: "Motor-protein "roundabouts": Microtubules moving on kinesin-coated tracks through engineered networks, Lab-on-a-Chip **4**, 83 (2004)

Molecular shuttles image surfaces

Biological Analogue: T cell trafficking

M. J. Miller, et al.: "Autonomous T cell trafficking examined in vivo ...", PNAS 100, 2604 (2003)

-100

Intravital imaging of vessels (red) and cells (green) in a living lymph node

T cell perform Random Walk to sample local landscape of antigens

-100 µm

+100 μm

+100 µm

H. Hess, et al., Nano Letters, 1, 235 (2001)

H. Hess, J. Howard, and V. Vogel:

A piconewton forcemeter assembled from kinesins and microtubules,

Nano Letters, 2(10), 1113 (2002)

1 s movie = 50 s real time

A piconewton forcemeter:

Lifetime of bionanodevices: A benchmark

- (1) Kinesin motors are dimeric proteins undergoing large conformational changes
- (2) Microtubules are supramolecular assemblies of the protein tubulin, their natural equilibrium between assembly and disassembly is affected by the stabilizing anti-cancer drug taxol (used in our devices)

- (1) Kinesin motors remain active for at least 1-2 days at room temperature.
- (2) Microtubules have a lifetime of ~12 hours.
- (3) The ATP fuel lasts for ~10 days.

Microtubules are the weak link! More aggressive stabilization by chemical cross-linking required.

C. Brunner, K.H. Ernst, H. Hess, V.Vogel: "Lifetime of biomolecules in hybrid nanodevices", Nanotechnology **15**, S540 (2004)

Lifetime of bionanodevices: Packaging materials

C. Brunner, K.H. Ernst, H. Hess, V.Vogel: "Lifetime of biomolecules in hybrid nanodevices", Nanotechnology **15**, S540 (2004)

Molecular Shuttles – a Module for Nanodevices

Surface Imaging

Nanoscale Forcemeter

Biosensor

Acknowledgements:

The UW molecular shuttle team:	Viola Vogel Jonathon Howard (until 2002) John Clemmens, Robert Doot, Christian Brunner, Karl-Heinz Ernst Robert Tucker, Sheila Luna, Di Wu, Sujatha Ramachandran Scott Phillips
The SNL motor team:	Bruce C. Bunker George D. Bachand Carolyn M. Matzke, Susan B. Rivera Andrew K. Boal, Joseph M. Bauer
Kinesin expression:	Mike Wagenbach & Linda Wordeman
Non-fouling surfaces by plasma deposition:	R. Lipscomb, Y. Hanein, B. Ratner, K. Böhringer
Funding:	NASA, DOE-BES DARPA Biomolecular Motors Program

Microfluidics versus Nanofluidics

Gyros' Gyrolab Workstation and Gyrolab Bioaffy[™] CDs

The HPLC-Chip from Aligent Technologies

Channel diameter: 50 μm vs. 500 nm

Sample volume: 500 nL vs. 10 fL

Flow velocity: 1 mm/s vs. 1 µm/s

