Dielectric Properties of the Hybrid Board of Polytetrafluoroethylene/SiO₂ Nanoparticles

I.S. Tsai

raduate Institute of Textile Engineering, Fang Chia University, Taiwan, Republic of China

Introduction

Over the past ten years, the extensive growth in the wireless communications industry
 Wireless Communication System Trend
 Increasing demands :High capacity, High data rate with constraints, Portability (Low power consumption; Small form factor), Fast time-to-market

Low dielectric Constant (D_k) Low dielectric loss factor (D_f)

Material	Dielectric Constant (D _k)	Dielectric loss factor (D _f)
FR4/glass	4.5	0.03
Driclad/glass	4.1	0.01
BT/Epoxy/glass	4.0	0.01
Epoxy/PPO/glass	3.9	0.01
Cyanate Ester/glass	3.5	0.01
Polyimide/glass	4.5	0.02
Ceramic fill thermoset	3.3	0.0025
EPTFE w/ thermoset	2.8	0.004
Silica fill PTFE	2.9	0.003
PTFE/glass	2.4	0.001

Applications of Fluoride-based RFB

Applications	Frequency used	
Cellular & Pager Telecom	1~3 GHz 13~24 GHz	
Frequency Modulated Continuous Wave Radar Profiler (FMCW)	75 GHz	
Direct Broadcast Satellite (DBS)	13 GHz	
Low Nosic Block downconverter (LNB), LNA (Low Nosic Amplifiers) and LNC (Low block down Converter)	2~3 GHz 12~14 GHz	
Global Positioning System (GPS)	1.575/1.228 GHz 2.4 GHz	
Very Small Aperture Terminal (VSAT)	12~14 GHz	
Digit Radio	10~38 GHz	

Dielectric Constant ; Dk

The dielectric constant is the ease of polarization (indicating the size of the quantity of electricity stored) and is a standard used to evaluate its performance as an insulator.

Dielectric Loss Factor; dielectric dissipation factor D_f

The dielectric dissipation factor is the degree of electrical energy loss in an insulator and is a standard used to evaluate its performance as an insulator.

The relationship between signal propagation delay time Td and dielectric constant D_k

Td = l

Td = signal propagation delay time (sec) C = light velocity $D_k = Dielectric \ Constant$ $l = prorogation \ length$ The relationship between dielectric constant D_k and transmission speed V

V = Transmission speed on PCB
K = constant
C = light velocity
D_k = dielectric constant of material

The relationship between signal transmission loss L and dielectric loss factor D_f

- L = signal transmission loss (dB/in)
- f = frequency
- D_f = dielectric loss factor
 - K = constant
- $C = light \ velocity(2.73 \times 10^8 \ m/s)$

Experimental

- Materials

PTFE Scrim Yarn

(Yeu Ming Tai Chemical industrial CO, Ltd, Taiwan). **PTFE Fabric**

Fabric structure: woven / warp density per inch are 46 × 40.

PTFE emulsify solution

particle size 60~80 nm; solid contents: 60 % (30J Daikin Japan).

Silicon Dioxide

nano silica 50 nm (U.S. Silicon)

Coupling Agent phenyltrimethoxy silane (Dow Corning Z-6124)

Instrumentation

- Heating sintering machine (~1500 °C).
- Pressure rollers for calendaring the fabrics.
- High speed mixer (~ 3400 rpm).
- Heat drying oven (Type of OV306, Sunway scientific corporation, Taiwan).
- Viscosity Instrument (Brookfield Digital Viscometer Model DV-Π+ Version 3.0, USA).
- Network Analyzer (Type of HP 8719D, USA)
- Scanning Electron Microscope (Type of JEOL JSM-5200, Japan).

Experimental results

Impact of rotational speed and add-on percentage of Si0₂ nanoparticles on viscosity of hybrid board

Impact of rotational speed of the mixer on dielectric constant (D_k) and dielectric loss factor (D_f) of hybrid board.

SEM photos of hybrid boards with different calendering times

(a) Four calendering times

(b) Six calendering times

(c) Twelve calendering times

Impact of rotational speed of the spindle on dielectric properties

Conclusion

The dielectric property of hybrid board is related to the nanoparticles add-on, rotational speed of spindle, and calendering times. Among them, nanoparticles add-on plays the most important roll for acquiring low dielectric property. However, it exits an optimal amount for add-on due to the large surface area of nanoparticles.

In Addition

- Add-on of SiO₂ nanoparticles decrease coefficient of thermal expansion of PTFE hybrid board.
- Instead of PTFE, for conventional electric-epoxy resin, Add-on of SiO₂ Nanoparticles also decrease the dielectric properties, conductivity and coefficient of thermal expansion of epoxy hybrid board.
- Comparison of add-on Al_2O_3 Nanoparticles and SiO_2 nanoparticles for PTFE hybrid board, add-on Al_2O_3 Nanoparticles shows a poor dielectric properties, but a better thermal property (less thermal expansion).
- Add-on of BaTiO₃ nanoparticles shows a similar dielectric properties to SiO₂ nanoparticles of PTFE hybrid board.
- The smaller the particle size is, the less is the Add-on amount.
 - A new approach to improve the **thermal expansion** during sintering is undertaken.

Thanks so much for your attention!

PTFE Scrim Yarn of Y-Type

Туре	Fineness	Tenacity	Elongation	Twist	Shrinkage
	(dtex)	(cN/dtex)	(%)	(T/m)	(250 °C/30 min)
SY-1	440 (±4 %)	>2.8	7	300 S	< 2 %

Plain fabric of type B

Plain fabric of type Y

2/1 twill fabric of type B

2/1 twill fabric of type Y

SEM photos of PTFE woven fabrics

Experimental parameters

Amount of PTFE emulsify solution kept onstant.

Amount of coupling agent kept constant.
Particle size is identical.

♦ Nanoparticles add-on: 1 – 3 %

Experimental parameters

Volume of mixer kept constant.
Type of the spindle is identical.
Rotational speed of spindle: 1200 – 3000 rpm

Experimental parameters

A ressure of the calender kept constant.
A Type of the calender is identical.
Calendering times: 4, 6, 12

Sintering conditions

sintering condition

High rotational speed of spindle

 Fibril formation increased tremendously
 Water evaporated rapidly

Increment of pore cells in nano-scale

Thermal dissipation problem

Impact of Calendering Times

Less effect on both D_k and D_f.
Related to strength and hardness of the board.

High add-on percentage of SiO₂ nanoparticles

More star-like shape structure.

- Abundant concave or micro-cracks is formed.
- Decrease thermal expansion
- Large surface area.
- Lead to coagulation and to form a bulky block.