

Polymer Nanofibers in Medicine, Biotechnology & Engineering

Seeram Ramakrishna

Professor & Dean of Engineering seeram@nus.edu.sg

- Motivation for Polymer Nanofibers
- Quest for Polymer Nanofibers
- Electrospinning State of the Art
- Affinity Membranes
- Tissue Engineering

Natural Fibers	Density [g/cm3]	Modulus (GPa)	Strength (MPa)	Application
Cotton	1.54	9 ~ 13	400 ~ 660	Clothing
Wool	1.32	1 ~ 3	120 ~ 200	Clothing
Silk	1.33	6 ~ 12	350 ~ 470	Clothing
Linen	1.5	18 ~ 31	650 ~ 750	Clothing

Fibers	Density [g/cm3]	Modulus (GPa)	Strength (MPa)	Application
Carbon (PAN)	1.80 ~ 1.90	230 ~ 700	2000 ~ 7200	Concrete reinforcing material, Sports items, Airplane
Carbon (Pitch)	1.40 ~ 2.18	335 ~ 840	1000 ~ 3500	Concrete reinforcing material, Sports items, Airplane
E-Glass	2.51	69~72	3450 ~ 3790	
S-Glass	2.49	86~90	4590 ~ 4830	

Micron-Fibers

Polymer Fibers	Density [g/cm3]	Modulus (GPa)	Strength (MPa)	Application
Rayon (cellose)	1.51	8.6 ~ 11	230 ~ 300	Clothing, Towel
Acetate	1.32	3.4 ~ 5.3	145	Cigarett Filter, Clothing
Vinylon	1.26 ~ 1.3	6.8 ~ 10	330 ~ 450	Rubber and Concrete Reinforcement
Nylon 66	1.14	3.0 ~ 5.2	500 ~ 650	Seawall bag, Clothing, Tire Coad, Fishing net, Carpet
PVC	1.39	3.6 ~ 6.1	330 ~ 460	Clothing
polyester	1.38	11 ~ 20	530 ~ 733	Clothing
polyacryl	1.15	3.9 ~ 8.6	360 ~ 570	Clothing, Mortar and Asphalt Reinforcement
polypropylene	0.91	3.2 ~ 9.6	370 ~ 600	Concrete Reinforcement, Sanitary Items
polyurethane	1.0 ~ 1.3		58 ~ 130	Clothing
Aramid (para-type)	1.39 ~ 1.45	56 ~ 150	2400 ~ 3500	Protecting cloth, Flak jacket, Rope, Tire code, Aerospace materials
UHMW-polyethelyne	0.97 ~ 0.98	70 ~ 175	2200 ~ 4800	Rope, Fishing Yarn, Fishing Net
PEEK	1.37 ~ 1.42	8.8 ~ 10	750 ~ 840	Filter, Tire code, Belt
polyphenylenesulfide (PPS)	1.34 ~ 1.36	3 ~ 8	540 ~ 660	Filter, Insulating material
polyimide	1.41	4	470	Filter, Heat resistant cloth
PLLA	1.27	5 ~ 8	460 ~ 690	Fishing yarn, Fishing net, Plant net
PCL	1.14	1.1 ~ 2.3	770 ~ 870	Golf tee, Plastics bag,
poly(butylene succinate)	1.26	1.9 ~ 3.2	620 ~ 740	Food package film.Food tray, Sanitary items

World Fiber Consumption

Total amount = 58 million tons in Year 2003

Ref. Japan Chemical Fiber Association (http://www.jcfa.gr.jp)

World Fiber Production

Why Nanofibers ?

Size Comparison

Defense & Security

Terrorism; Natural Disasters

Defense & Security

Protective Clothing that selectively capture Chemical (gases & radioactive compounds) and Biological (bacterial spores & viruses)

contaminants

Defense & Security

Stop & Neutralize; Stop & Kill Fabrics

Size Exclusion- Functionalized polymer nanofibers act as a molecular sieve and prevent entry of bacteria

<u>Chemical Affinity-</u> Oxime functionality reacts to hydrolyze chemical toxins and helps to bind radioactive contaminants too

Molecular Affinity- Proteins present on nanofiber surface will selectively bind to biological contaminants

Electronic Noses; Electronic Tongues ICNT, Nov 7-11, 2004

TECH & SCIENCE

The world has become a darker place in last 50 years

Though the Sun remains as bright as ever, scientists believe less sunlight is reaching the Earth's surface because of pollution

NEW YORK — In the second half of the 20th century, the world became, quite literally, a darker place.

H16

Defying expectation and easy explanation, hundreds of instruments around the world recorded a drop in sunshine reaching the surface of Earth, as much as 10 per cent from the late 1950s to the early 1990s, or 2 to 3 per cent per decade.

In some areas like Asia, the United States and Europe, the drop was even steeper. Hong Kong, for instance, saw a 37 per cent decrease in its sunlight.

No one is predicting that it may soon be night all day, and some scientists believe the skies have brightened in the past decade as the suspected cause of global dimming — air pollution — clears up in many parts of the world.

Still, the dimming trend noticed by a handful of scientists two decades ago, but dismissed at the time as unbelievable — is now attracting wide attention. Research on global dimming and its implications for weather, water supplies and agriculture, will be presented in Montreal next week at a joint meeting of the American and Canadian geological societies.

Dr James Hansen, director of Nasa's Goddard Institute for Space Studies in New York City, said scientists had long known that pollution particles reflected some sunlight, but added that now they are realising the magnitude of the effect.

"It's occurred over a long time period, so it's not something that perhaps jumps out at you as a person in the street," he said. "But it's a large effect."

Satellite readings show that the Sun remains as bright as ever, but less and less sunlight has been making it through the atmosphere to the ground.

Pollution dims sunlight in two ways, scientists believe. Some of the light bounces off soot particles in the air and back into outer space. Pollution also causes more water droplets to condense out of air, leading to thicker, darker clouds that also block more light.

For that reason, the dimming effect appears to be more pronounced on cloudy days than sunny ones. In some more pristine regions, there has been little or no dimming.

But the dynamics and effects of global dimming are not fully understood. Antarctica, which would be expected to have clean air, has also dimmed.

"In general, we don't really understand this thing that's going on," said Dr Shabtai Cohen, a scientist in Israel's agriculture ministry who has studied global dimming for a decade, "and we don't have the whole story".

The instrument to measure sunshine, called a radiometer, is simple in design: a black plate under a glass dome. Like asphalt in summer, the black plate turns hot as it absorbs the Sun's energy; its temperature tells the amount of sunlight that has shone on it.

Since the 1950s, hundreds of radiometers have been installed, from the Arctic to Antarctica, dutifully recording sunshine levels.

Not every scientist is convinced that the dimming has been pronounced. While radiometers are simple instruments, they do require periodic calibration and care.

Dirt on the glass dome will block light, leading to erroneous indications of declining sunlight. Also, all the radiometers have been on land, leaving the effect over water, which occupies three-quarters of the Earth's surface, to supposition.

"I see some datasets that are consistent and some that aren't," said Dr Ellsworth Dutton, chief of the radiation monitoring group at the National Oceanic and Atmospheric Administration.

"Certainly, the magnitude of the phenomenon is in considerable question."

- THE NEW YORK TIMES

Source: The Straits Times, 14th May 2004, Page H16.

(40x magnification shows the spun fiberglass skin of the filter pad.)

Air Filter Membranes

Water Engineering

Comparison of colour GREELEY CREEK COARSE SCREENS CLEARWELL RESERVOIR WHO Standards HIGH-SERVICE POND PUMPS DISINFECTION Rainwater (CHLORINE) (PEAK DRAWS ONLY) TRANSCANADA HIGHWAY Local Reservoir Water RESERVOIR CHLORINE CONTACT IN TRANSMISSION MAIN **PUB Tap Water** 6 BACKWASH MICROFILTRATION NEWater NEUTRALIZATION GREELEY RESIDUAL CREEK PONDS BACKWASH DISTRIBUTION http://www.pub.gov.sg/NEWater SYSTEM

Standards of potable water

Water purification via membrane filters

Liquid Filter Membranes

Anti-microbial Clothing

Uemura et al, Biomaterials 24 (2003) 2277.

Wound dressing www.hospitalmanagement.net

Peridontal Membrane

Drug Delivery

Nano-Syringe

Ref. http://resurgence.gn.apc.org/issues/broadhead221.htm

A novel patch for delivery of multiple drug types at controlled release rates

The hydrophilic drug (water soluble antioxidant drugs, Vitamin C and analgesics) is coated onto the polymer surface by immersion and evaporation of water from drug solution

The hydrophobic drug molecules (steroid hormones, vitamins A and E) are dissolved with the fatty acid and impregnated on the surface of the nanofiber mesh

Company	Product	Constituent drug	Comments
Alza	D-Trans, E-trans	Nicotine patches	Min 1 day, max 1 week
3M	Minitran and Climara	Nitroglycerin, Estradiol	For heart attacks Max. 1 day
Genetronics	Medpulser, Wave pulser	Proteins	Electroporation technique
Cilag-Janssen	Duragesic	Fenantyl	Narcotics, for pain management 10 day patches available
Under Investigation	Activetex	Wound healing, anti bacterial	Available only for water soluble drugs

Commercial products

Commercial Technologies

Energy & Electronics

Thermally Conducting Nanotubes and Fibers -How?

- produce degradable
 polymer fiber template by electrospinning
- coat fibers with desired wall materials using various types of deposition techniques
- selectively remove core material by thermal degradation

Energy & Electronics

- Motivation for Nanofibers
- Quest for Polymer Nanofibers
- Electrospinning State of the Art
- Affinity Membranes
- Tissue Engineering

Self-Assembly

Matsuda et al., Macromolecules, 1996

Polymers to have been assembled into nanofibers

- PS-b-PCEMA
- PS-b-PCEMA-b-PtBA
- Peptide-Amphiphile
- Polyphenylene Dendrimer
- Bolaform glucosamide

Specific information

- Fiber diameter: 7 100 nm
- Fiber length: 1 several micron

Phase Separation

Method

- Polymer dissolution
- Phase separation and gelation
- Solvent exchange
- Freeze-drying

Specific Information

- No special equipment requirement
- Simple procedure
- Fibers in nano scale (50 -500 nm)
- Shape is determined by the mold

Electrospinning

(http://fluid.ippt.gov.pl/sblonski/nanofibres.html)

Comparison of Various Methods

Process	Laboratory or industrial process	Ease of processing	Advantages	Limitations
Self- Assembly	Lab	Difficult		 Complex process. Limited to a few polymers.
Phase Separation	Lab	Easy	 Simple process. Batch-to-batch consistency is easily achieved. Mechanical properties of the mat can be tailored by adjusting polymer concentration. 	 Limited to a few polymers.
Electro- spinning	Lab; Potential for industrial processing	Moderately easy	 Simple process. Cost effective. A large variety of polymers can be electrospun. Long, continuous nanofibers can be produced. Production of aligned nanofibers is feasible. Potential to combine with secondary proecss (ex. textile technology) 	

- Motivation for Nanofibers
- Quest for Polymer Nanofibers
- Electrospinning State of the Art
- Affinity Membranes
- Tissue Engineering

Snapshot of Electrospinning Worldwide

Worldwide more than **70** research groups are working on electrospinning

Universities & Institutes

Industry

- Donaldson Filtration Solutions, USA
- Ahlstrom, USA
- Parker Filtration, USA
- Fleetguard, USA
- Hollingsworth & Vose Company, USA
- eSpin Technologies, USA
- Donaldoson Company, USA
- Hollingsworth & Vose GMBH & CO, Germany
- Tejin, Japan

Strategic Research Group for Nanofiber Technology (Japan Society of Fiber Science and Technology)

US Patents on Electrospinning

Year

Research Areas

Spinnable Combinations - Polymer Nanofibers -

Category	Polymers	Solvent
	Polystyrene, PS	tetrahydrofuran, dimethylformamide, toluene, chloroform
	Polycarbonate, PC	dichlormethane, chloroform, tetrahydrofuran,
	Polymethacrylate, PMMA	tetrahydrofuran, acetone, chloroform
Thermoplastic	Polyvinylchloride, PVC	mixture of tetrahydrofuran & dimethylformamide
polymers	Polyethylene Terephtalate, PET	mixture of dichloromethane & trifluoroacetic acid
	Nylon6,6, <mark>PA-6</mark>	formic acid
	nylon-4,6, <mark>PA-4,6</mark>	formic acid
	Polyamide, PA	dimethylacetamide
	Polyurethanes, PU	dimethyl formamide
	Polyvinyl alcohol, PVA	distilled water
	polylactic acid, PLA	dimethyl formamide, dichlormethane
Discommetible	Polycaprolactone, PCL	chloroform, toluene, dichloromethane
Biocompatible	Polyethylene gricol, PEG	chloroform
Biodegradable	Polylactide-co-glycolide, PLGA	mixture of tetrahydrofuran & dimethylformamide
polymers	polyethylene-co-vinyl acetate, PEVA	
	polyethylene-co-vinyl alcohol, PEVOH	mixture of Isopropanol & water
	Polyethylene oxide, PEO	distilled water, chloroform, acetone
	Collagen	hexafluoro-2-propanol

Spinnable Combinations - Polymer Blend/Composite Fibers -

Category	Polymers	Solvent
	PEVA/PLA	-
	PMMA / TAN	mixture of dimethyl formamide & toluene
	Polyaniline/PEO	chloroform, camphorsulfonic acid
Polymer blends	Collagen/PEO	Hydrochloric acid
	Silk/PEO	silk aqueous solutions
	Polyaniline/PS	chloroform, camphorsulfonic acid
	Fibrous calf thymus Na-DNA	mixture of water & ethanol
Composites (organic-inorganic hybrids)	Poly(vinil alcohol)PVA/Silica	distilled water
	Nylon6/montmorillonite (Mt)	hexa-fluoro-isopropanol (HFIP), mixture of HFIP & dimethylformamide
	PolyacryInitrile (PAN) / TiO2	-
	Polycaprolactone / gold or ZnO	-
	PCL/CaCO ₃	Chloroform
	PCL/carbon nanotube	Water
Electrospinning- Key Issues

National University of Singapore

- How to produce nanofibers with controlled and uniform dimensions?
- How to place them in desired patterns and assemblies reproducibly?
- How to scale-up the process cost effectively?
- How to measure, predict, tailor and control physical, mechanical, chemical, biological, optical and electrical properties?

Electrospinning Process

ICNT, Nov 7-11, 2004

Electrospinning Process Variables

Solution properties

- Viscosity
- Polymer Concentration
- Molecular Weight of Polymer
- Electrical Conductivity
- Elasticity
- Surface tension

Processing conditions

- Applied Voltage
- Volume Feed Rate
- Distance between Needle & Collector
- Needle Diameter
- Take-up Rate

Ambient conditions

- Temperature
- Humidity
- Atmospheric Pressure

Polymer concentration effects

Molecular weight effects

Electrical conductivity effects

Voltage & Feed rate effects

Processing map

ICNT, Nov 7-11, 2004

Control Over Fiber Uniformity and Fineness?

Uniform Nanofiber

Non-uniform Fine Nanofiber

Electrospinning- Key Issues

NUS National University of Singapore

- How to produce nanofibers with controlled and uniform dimensions?
- How to place them in desired patterns and assemblies reproducibly?
- How to scale-up the process cost effectively?
- How to measure, predict, tailor and control physical, mechanical, chemical, biological, optical and electrical properties?

Aligned Nanofibers ?

Aligned Fibers

Cylinder collector

Boland et al., J Macromol Sci Pur Appl Chem, 2001

Frame collector

Dersh et al., J. Polym. Sci. B Polym. Phys., 2003

Bornat, US Patent, 1987

Disk collector

Theron et al., Nanotechnology, 2001

Parallel electrode

Sharp pin counter electrode

Dan Li et al., Nano Letters, 2003

Natarajan et al., Applied Physics Letters, 2004

Custom Built E-spinning Set-up

Nanofiber Bundle

PCL 10w% (dichloromethane/ methanol (75/25))

- Voltage: 10kVDisk rotation speed: 11m/s

Seeram et al. Innovation, 2003

Preliminary Results

Collector Design

ICNT, Nov 7-11, 2004

Preliminary Results

Effect of Material of Rotatable Table

Conductive

Non-conductive

Effect of Orientation of Rotatable Table 3D Structure (0°/45°/-45°)

Nanofiber Yarns

Scardino et al US Patent 6,308,509 Oct 30, 2001

Laurencin et al US Patent 6,689,166 Feb 10 2004

Other Fiber Morphologies

Beads formation

PLLA 7.5w% (dichlormethane/dimethyl formamide)

- Voltage: 20kV
- Disk rotation speed: 11m/s

P(LLA-CL) 10w% (dichlormethane/7.5phr palladium) - Voltage: 10kV

Interconnected Structure

P(LLA-CL) 7.5w% (Acetone) - Voltage: 15kV

ICNT, Nov 7-11, 2004

Shell-Core (& Hollow) Nanofibers

Coaxial Electrospinning

PCL / Gelatin (shell / core)

ICNT, Nov 7-11, 2004

PCL (shell) / Drug (core)

TEM images of the shell-core compound nanofiber segments with the resveratrol concentrations of (a) 4%, (b) 6%, (c) 8%, and (d) 10% in the core and 7% PCL in the shell

Further Enhancement of E-Spinning Set-up

Schematic diagram of Spinneret with Jacket (courtesy of Ryuji)

The rate of gas flow along the jet, controls the degree of elongation jet experiences. The flowing gas *pulls* the polymer jet, by applying shear stresses on the latter's surface. Controlling the degree of jet elongation may allow for control over the uniformity and fineness of the fiber formed.

Electrospinning- Key Issues

National University of Singapore

- How to produce nanofibers with controlled and uniform dimensions?
- How to place them in desired patterns and assemblies reproducibly?
- How to scale-up the process cost effectively?
- How to measure, predict, tailor and control physical, mechanical, chemical, biological, optical and electrical properties?

Production Rate of Current Methods

Lab Scale Set-up

Random mats

Fiber Diameter = 300nm

Production Rate = 0.02g/jet/min

"eSpin produces about 10,000 yards of nanofiber per day – far below the needs of major filtration companies. "We have one customer that would like to have 50 million square yards a year. That's (only) one customer, and there are hundreds of filter companies."

Large Scale Electrospinning

Multiple Jet Electrospinning

Productivity of Processes

Multiple Jet Spinning

- > How do the jets influence one another?
- How can the number of applied jets be maximized with optimum spacing?
- How to better control jet formation and acceleration?
- How to achieve both high production rate and tailored lay-up of fibers

Upward Needleless Electrospinning

Thousands of upward jets

Yarin et al., Polymer, 2004

National University of Singapore

Multiple jets attracted to a piece of a metal saw used as a counter-electrode

Electrospinning- Key Issues

NUS National University of Singapore

- How to produce nanofibers with controlled and uniform dimensions?
- How to place them in desired patterns and assemblies reproducibly?
- How to scale-up the process cost effectively?
- How to measure, predict, tailor and control physical, mechanical, chemical, biological, optical and electrical properties?

Structure - Property Studies

Tensile Sample Preparation

ICNT, Nov 7-11, 2004

Structure - Property Studies

Solution conductivity effects Higher conductivity Molecular orientaion

of Singapore

Structure - Property Studies

Lower concentration Molecular orientation

of Singapore
Structure - Property Studies

Take-up velocity effects Take-up velocity ➡ Dominant parameter!!

of Singapore

Tensile Property

PLLA single nanofiber

Conditions	Tensile strength [MPa]	Tensilemodulus [GPa}	Elongation at break [%]	Fiber diam eter	notes
Film	28-50	1.2-3.0	6.0-2.0		
Melt-spun fiber	up to 870	up to 9.2	25	severaltens μ m	spun & drawn
Solution-spun fiber	up to 2,300	up to 16	12-26	severaltens μ m	spun& drawn
Electrospun nanofiber	89 <u>+</u> 40.3	1.02 <u>+</u> 1.6	1.54 <u>+</u> 0.116	890 <u>+</u> 190 nm	spun at 70m/m in
	183 <u>+</u> 25	2.9 <u>+</u> 0.435	0.454 <u>+</u> 0.11	610 <u>+</u> 50 nm	spun at 700m/m in

Fractured single nanofiber

Molecular Structure

A fiber generally could be regarded to consist of crystalline regions, noncrystalline regions (often referred to as amorphous) and voids.

Polymer fiber

fibril

Surface Structure Vs Bulk Structure

Core-structure

Skin-structure

Conditions	Fiber diameter [µm]	Diameter of core- structure [µm]	Thickness of skin structure [µm]
Melt-spun fibers (micron-fiber)	126	76	25
Electrospun fibers (nano-fiber)	< 1	?	?

Modeling of Nanofibers

Key Considerations

- Molecular Weight
- Percentage Crystallinity
- Orientation of Crystallites
- **Porosity of Nanofibers**
- Size-dependency via surface modulus

Property

Composite Nanofibers

Fujihara, K., Kotaki, M. and Ramakrishna, S. (2003) Structure-Property Relationship of Electrospun Polymer/Calcium Carbonate Composite Nanofibers. Proceedings of the 8th Japan International SAMPE Symposium and Exhibition, November 18-21, Tokyo, Japan, pp. 1213-1216.

For bulk nanocomposites, volume fraction of each material phase take precedence over interface properties. (*Number of bondings between phases is negligible compared to bondings within each material phase*.)

For composite nanofibers, interface properties are important. (*Number of bondings at interface is significant compared to those within each material phase.*)

Interphase With ionic bonding

Modeling of Shell-Core Nanofibers

- Motivation for Nanofibers
- Quest for Polymer Nanofibers
- Electrospinning State of the Art
- Affinity Membranes
- Tissue Engineering

What is affinity membrane?

- In affinity separation, the separation is not largely due to size but rather on the selectivity of the matrix to 'capture' molecules.
- Great potential in biological systems for purifying/separating proteins or other biomolecules from biological fluids

Size exclusion membrane

Large surface area to volume ratio

- Ability to immobilize a high density of ligands
- provide a large area for the contacting between the ligand and the target molecules, which facilitate the capturing process.
- Directly affects the performance (efficiency)

Functionalized electrospun nanofiber as affinity membrane

Can the electrospun nanofiber mesh be surface functionalized and applied as affinity membrane?

- 1.CD functionalized polymer nanofiber for organic waste removal
- 2. $S3\Delta$ immobilization on nanofiber surface for LPS (endotoxin) removal
- 3.BSA functionalized polymer nanofiber for bilirubin removal

1.CD functionalized polymer nanofiber for organic waste removal

Key structural feature and application of CD

Application:

Solubilization of various water-insoluble compounds
Ability to discriminate between positional isomers, functional groups, enantiomers

of Singapore

Electrospun polymer nanofiber

2. S3 \triangle immobilization on nanofiber surface for LPS (endotoxin) removal

Endotoxins (lipopolysaccharide - LPS) is a poisonous substance liberated by gram-negative bacteria. Sever septic shock caused by endotoxin during bacterial infections is responsible of over 100,000 death in US alone.

LPS is a frequent contamination in many heath-care injection products derived from bioprocesses.

Toxic portion of LPS, a highly conserved bioactive center of LPS V. Frecer et al. Biochimica et Biophysica

Acta 1466 (2000) 87-104

S3 peptide (NH₂-наенкукікукокудогродстеутутся соон)

S3[△] contains 34 amino acids and corresponds to a highly specific LPS binding sushi domain (268-301) in factor C, a well known LPS binding protein found in blood of horseshoe crab.

S3 \triangle is able to bind with the toxic portion of LPS (Lipid A) with highly specific affinity constant (k_a= 6.5×10² M⁻¹S⁻¹)

NH2-HAEHKVKIKVKQKYGQFPQGTEVTYTCSGNYFLM-COOH

A proposed model of combination of the S3 Δ peptide and Lipid A. V.Frecer et al. Eur J Biochem 267

FITC-LPS captured by the S3∆ peptide functionalized PET nanofiber

3. Bovine serum albumin (BSA) immobilization on the PSU nanofiber for bilirubin removal

Bilirubin is a metabolic waste product in human blood and has higher concentrations in blood of patients suffering from hyperbilirubinemia. The excessive bilirubin must be removed especially for the baby, of whom the brain development can be affected.

Plasma treated PSU

PSU-PMAA (grafting time is 2h)

Morphology Change

ATR Spectra of the PSU fiber mesh

BSA capacity: 15µg/mg

FITC-BSA grafted onto the PSU fiber mat

Bilirubin capturing ability: 0.12 $\mu\text{g/mg}$

Confocal image of PSU-BSA-Bilirubin

Can the electrospun nanofiber mesh be surface functionalized and applied as affinity membrane?

Three kinds of ligands have been introduced onto electrospun nanofiber surface. The functionalized nanofiber showed ability to capture target molecules.
Affinity Membrane - Future Work

➢Optimization of the reaction parameters for conventional (UV induced, Ce4+ induced) surface grafting polymerization on polymer nanofiber surfaces

- Surface modification of polymer nanofibers using living radical grafting polymerization techniques (RAFT, ATRP)
- Designing of a filter setup suitable for the electrospun nanofibrous membrane and for the separation efficiency test.
- Characterization of the nanofibrous membrane's transportation properties using the newly designed filter.

Separation efficiency test of the nanofibrous affinity membrane using the newly designed filter.

Development of a theoretical model for the analysis of the hydrodynamic situation, mass transfer, reaction or capturing kinetics in the nanofibrous membrane.

- Motivation for Nanofibers
- Quest for Polymer Nanofibers
- Electrospinning State of the Art
- Affinity Membranes
- Tissue Engineering

Tissue Engineering

Mouse ears: In a tissue engineering feat, Charles Vacanti of the University of Massachusetts succeeded in growing cartilage in the shape of a human ear on the back of a mouse. The researchers used a polymer framework to grow human cartilage cells on the mouse, specially bred not to reject human cells.

Functional Tissue Engineering Paradigm Duke University Medical Center

Orthopaedic Bioengineering Laboratory

Tissue engineering can perhaps be best defined as the use of a combination of cells, engineering biomaterials, suitable biochemical factors and tissue culture system to improve or replace biological functions in an effort to advance medicine.

Tissue Engineering

- Native ECM comprises of structural fibers (proteins and proteoglycans) ranging in diameter from nano- to micrometer scale.
- Cells attach and organize well around fibers with diameters smaller than the size of the cells.
- Hypothesize that the interplay between cells and nanoscale synthetic ECM is critical to the morphological and functional development of the cells.

Cell Morphology – SMCs Successful Culturing of SMCs on Aligned nanofibers

в

The material used was co-polymer PLLA/CL (70:30):

- a). α -actin filaments on aligned nanofibrous scaffold.
- b). α -actin filaments on TCPS.
- c). Myosin filaments on aligned nanofibrous scaffold.
- d). Myosin filaments on TCPS.

Cell Morphology – SMCs Effects of Fiber Dimensions

The material used was PLLA:

- a). Nano Dimension.
- b). Sub-Micron Dimension.
- c). Micron Dimension.

Cell Morphology – SMCs Effects of Fiber Dimensions

(a)

(b)

The material used was PLLA:

- a). Nano Dimension.
- b). Sub-Micron Dimension.
- c). Micron Dimension.
- d). Tissue Culture Plate.

Nano dimension fibers provide the best support for SMCs growth.

Cell Morphology – SMCs Effects of Fiber Dimensions on Cell Adhesion

Nano-dimension fibers provide better SMCs adherence than sub-micron and micron dimension PLLA fibers.

Cell Morphology – SMCs Effects of Fiber Dimensions on Cell Proliferation

Nano-dimension fibers support better SMCs proliferation than sub-micron and micron dimension PLLA fibers.

Cell Morphology – SMCs SMCs Cultured on Collagen Nanofibers

PCL + Collagen

Collagen

×788

SEM micrographs of SMCs cultured on:

- a). Control tissue culture plate.
- b). PCL nanofibers.
- c). Collagen coated PCL nanofibers.
- d). Collagen nanofibers.

Collagen nanofibers provide the best support for SMCs proliferation.

Cell Morphology – SMCs SMCs Cultured on Collagen Nanofibers - Cell Proliferation

MTS Metabolic Assay

By MTS assay, collagen nanofibers provide the best support for SMCs proliferation.

Cell Morphology – ECs ECs Cultured on PLLA/PCL Co-Polymer Nanofibers

We observed that ECs do not grow very well on unmodified nanofibers (b) and exhibit a more rounded morphology when compared to ECs cultured on tissue culture plates (a). Endothelialization of material surface is essential to prevent thrombosis and enhance graft survival.

Cell Morphology – ECs ECs Cultured on Collagen-Modified PLLA/PCL Co-Polymer Nanofibers

Tissue Culture plate

Unmodified Nanofiber

Plasma Treated Nanofiber

Collagen Coated Nanofiber

Collagen Blended Nanofiber

ECs cultured on collagen-modified nanofibers exhibit very similar morphological resemblance to that on TCPS

He W., Yong T., Teo W.E., Ma Z. and Ramakrishna S., Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for the blood vessel tissue engineering, Tissue Engineering, (submitted). ICNT, Nov 7-11, 2004

Cell Morphology – Mouse Neural Cell Line c17.2 Successfully Cultured Neural Cells on Random PLLA Nanofibers

THE NEURITE EXTENDED MORE THAN TWICE THE LENGTH OF THE CELL BODY AFTER 3 DAYS OF CULTURE.

Yang F., Murugan R. Wang S. and Ramakrishna S., Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials, (in press).

Cell Morphology – Mouse Neural Cell Line c17.2 Neural Cells Cultured on PLLA Nanofibers - Cell Adhesion

Neural stem cells adhered better to nanofibers (ES) than solvent cast film (SC). TCP = tissue culture plate.

Cell Morphology – Mouse Neural Cell Line c17.2 Successfully Cultured Neural Cells on Aligned PLLA Nanofibers

SEM photographs of PLLA aligned nanofibers

2 days after seeding with neural stem cells

SEM micrographs of electrospun PLLA fibers

ANF: Aligned nanofibers **AMF:** Aligned micro fibers **RNF:** Random nanofibers **RMF:** Random micro fibers

Confocal micrographs of immunostained neurofilament 200kD in NSCs after 2 days of culture on random PLLA fibers and the glass coverslip coated with poly-L-lysine (CS/PLL) used as control

- Neurites are *randomly* orientated.
- NSCs present *multiple* and *branched* processes.

Confocal micrographs of immunostained neurofilament 200kD in NSCs after 2 days of culture on aligned PLLA fibers

Cell Morphology – Mouse Neural Cell Line c17.2 Neural Cells Cultured on PLLA Nanofibers – Neurite Length

On aligned nanofibers (ANF), neural stem cells established the greatest neurite length. AMF = aligned microfibers, RNF = random nanofiber, RMF = random microfibers.

SEM micrographs of NSCs seeded on different substrates for 2 days showing the cell-matrix adhesion between the NSCs and the PLLA fibers. Bar = 5 μ m.

Cell Morphology – Human Dermal Fibroblasts HDFs Cultured on Collagen Nanofibers

TISSUE CULTURE PLATE

PCL

COLLAGEN-COATED PCL

COLLAGEN

Collagen nanofibers provide the best support for HDFs proliferation.

Cell Morphology – Human Dermal Fibroblasts HDFs Cultured on Collagen Nanofibers - Cell Proliferation

By MTS assay, collagen nanofibers provide the best support for HDFs proliferation.

Cell Morphology – Hepatocytes

SEM images of hepatocytes after 8 days of culture: (a, b, c) Hepatocytes cultured on galactosylated PCLEEP film formed rounded spheroids that did not integrate with the scaffold; (d, e, f) In contrast, hepatocytes cultured on galactosylated PCLEEP nanofiber mesh showed that the aggregates engulfed the functional nanofibers

Chua K.N., Lim W.S., Zhang P.C., Lu H.F., Wen J., Ramakrishna S., Leong K.W. and Mao H.Q., Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold, Biomaterials, (in press).

Cell Morphology – Hepatocyte Cell Attachment

(a) Hepatocyte attachment on galactosylated and unmodified nanofiber meshes and spin-coated films 3 hours after seeding. Data are means \pm SD, n = 6. *p < 0.01; **p < 0.01. (b) Albumin secretion levels, (c) urea synthesis function levels, and (d) 3-MC induced P450 function levels of hepatocytes at various time points normalized against the total number of attached cells (a) when cultured on different substrates. Data are means \pm SD, n = 2.

Human osteoblasts cultured on $PCL/CaCO_3$ composite nanofiber scaffolds exhibited excellent cell attachment.

Gene Expression

- Cell Adhesion Gene Expression Analysis
- By Immunofluorescence and Flow Cytometry
 - $\ \ \text{Integrins} \alpha \ \text{and} \ \beta$
- By RT-PCR
 - Integrins α and β
 - PECAM-1
 - ICAM-1
 - VCAM-1
 - von Willebrand Factor (vWF)
 - $-\beta$ -Actin (control)

Gene Expression – SMCs: Immunofluorescence

LSCM micrographs of immunofluorescent staining using antibodies against $\beta 1$, $\alpha 2$, $\alpha 5$, $\alpha 2\beta 1$ and $\alpha 5\beta 1$ integrins on SMCs cultured 24 hours on nanofibrous P(LLA-CL) substrate (NF)

Gene Expression - SMCs

Flow Cytometry: Data Analysis

THE PERCENTAGE OF POSITIVE SMCs CULTURED ON DIFFERENT SUBSTRATES WHICH EXPRESSED DIFFERENT ADHESION PROTEINS.

Gene Expression - SMCs

Flow Cytometry: Data Analysis

THE INTENSITY OF ADHESION PROTEINS EXPRESSED BY SMCs CULTURED ON ELECTROSPUN NANOFIBROUS PLLA:PCL SCAFFOLD, SOLVENT CAST PLLA:PCL

FILM AND TCPS SUBSTRATE

RT-PCR analysis of integrin subunits $\beta 1$, $\beta 3$, $\beta 5$, $\alpha 2$ and $\alpha 5$ mRNA expression in SMCs cultured on tissue culture polystyrene substrate (TCPS), nanofibrous P(LLA-CL) substrate (NF) and conventional P(LLA-CL) film substrate (FL) 24 hours post seeding.

Gene Expression – ECs: RT-PCR ECs Cultured on Collagen:Co-Polymer Blended Scaffolds

Preliminary data suggests collagen:co-polymer blended scaffolds provide good support for ECs growth.

Tissue Engineering - Conclusions

- SMCs proliferate well on unmodified synthetic nanofibers and orientate along the alignment of the nanofibers.
- ECs require modified synthetic nanofibers for growth.
- Neural cells grow well on unmodified synthetic nanofibers and aligned nanofibers promote neurites extension.
- Collagen nanofibers promote excellent growth of HDFs.
- Galactosylated nanofibers encourage integration of hepatocyte aggregates into the mesh.
- Calcium carbonate-nanofiber composite nanofiber membrane promotes osteoblasts growth.
- Adhesion molecules and ECM proteins are well expressed by SMCs and ECs cultured on nanofibers.

Blood Vessel

- Tunica adventitia

 which consist mainly of
 <u>connective tissue fibers</u>.
- Tunica media
 - formed by a layer of
 <u>circumferential smooth</u>
 <u>muscle</u> and variable amounts of connective tissue.

• Tunica intima

• comprises its **<u>endothelial</u> <u>lining</u>** (typically simple, squamous) and associated connective tissue.

School of Anatomy and Human Biology - The University of Western Australia http://www.lab.anhb.uwa.edu.au/mb140/CorePages/Vascular/Vascular.htm
Blood Vessel Tissue Engineering

Random nanofibers

Electrospun polymer nanofibers have tremendous potential in medicine, biotechnology and engineering. To realize this potential further progress is needed in the following areas:

- > Ability to produce nanofibers with controlled dimensions and place them in desired patterns & assemblies reproducibly.
- > Scale-up the process to industrial level cost effectively.
- Ability to measure, predict, tailor and control physical, mechanical, chemical, biological, optical and electrical properties of nanofibers.

National University of Singapore Snapshots

