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Introduction to Rare Earth Manganites

General Formula : A3+
1-x B2+

x Mn3+
1-x Mn4+

x O2-
3

A : Rare earth Ion La3+ ,Pr3+ ,Nd3+

B : Divalent Ion Ca2+ ,Pb2+ ,Sr2+

Phenomena Exhibited by the Manganites

• Colossal Magnetoresistance (CMR)
• MI transition concurrent with FM-PM transition
• Charge Ordering , Orbital Ordering

• Phase Separation
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Perovskite Structure

A or B : Body Centre (purple)
Mn : Corners (gray)
O : Midpoints of the edges (green & blue)
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JT Splitting

d4 d3

Δ= 2 eV

1.5 eV

Hund’s coupling 3 eV

Hole Doping : Doping of Divalent ion in AMnO3 introduces Mn4+

Electron Doping : Doping of trivalent ion in BMnO3 introduces Mn3+



Nanomanganites - Properties-Importance
•Magnetic recording, magnetic data storage and magnetic
field sensors etc…

•Tuning of intrinsic colossal magneto resistance (CMR) with
the particle size leads to intergranular magneto resistance
(IMR) which is due to the spin polarized tunneling between
the neighbouring grains. IMR can be increased by

decreasing the grain size.

•Reduction of saturation magnetization with the particle size
due to the enhancement of outer layer (shell) thickness as the
particle size decreases.

•In nano range, each grain consists of core and shell. Core
exhibits the properties similar to the bulk and the outer shell
consists of oxygen faults, vacancies and dangling bonds.
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•Magnetic Calorific Effect (MCE) reduces with the surface
to volume ratio. Core shows the first order magnetic phase
transition and the shell shows the second order. The nano
crystal exhibits the second order phase transition by hiding
the intrinsic behaviour.

•Exhibiting the superparamagnetic behaviour, surface spin
glass behaviour, large coerceivities and improved low field
magneto resistance (LFMR) as compared to their
corresponding bulk values.

•Tuning of magnetic phase transitions with the particle size.

•Increase in resistivity with the decrease of particle size.
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Motivation

•The above mentioned properties are addressed only
for the limited number of nanomanganite systems
(LCMO, LSMO) and are not studied in other systems.
The transport and magnetic properties of this system
(NSMO) are studied for the first time in our report.

•There are very few EMR reports on nanomanganite
systems which gives the information about the
interaction mechanisms, spin-orbit couplings,
nanoscopic phase separations and magnetic phase
transitions.
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Nd1-xSrxMnO3 phase diagram
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Experimental details:

•Sample preparation - Sol-gel method

•X-ray diffraction (XRD) to know the phase purity and
Transmission electron microscopy (TEM) was used to
measure the grain size and it’s distribution.

•Resistivity measurements were done both in the presence
(7T) and in the absence of magnetic field down to liquid
nitrogen temperature from room temperature to study
the transport properties.

•AC susceptibility measurements were performed from
room temperature down to 77K to study the magnetic
phase transitions.

•Electron Magnetic Resonance measurements were
performed from 10K to 300K to study the spin dynamics.
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XRD micrograph

TEM micrographs
Unit cell: orthorhombic, a = 5.45 Ao , b = 5.43 Ao, c
= 7.71 Ao, , space group is PBNM.

Bulk values: a = 5.46 Ao , b = 5.45 Ao , c = 7.73 Ao
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Mean grain
size 20nm

Mean grain
size 35nm



Effect of grain size:
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•With the sintering temperature,
grain size increases.

•With the decrease in grain size,
Tc (ferromagnetic-paramagnetic
transition temperature)
increases.

•As the grain size decreases, Tp
(metal-insulator transition
temperature) decreases.



.

Sample

code

Compositional

Formula

Sintering

Temp.(oC)

TP TC T(TCTP)

---------------------------------------

(DegreeKelvin)

S

(nm)

MR%

NSMO-8 Nd0.67Sr0.33MnO3 800 215 260 45 15 45

NSMO-9 Nd0.67Sr0.33MnO3 900 225 258 33 20 47

NSMO-10 Nd0.67Sr0.33MnO3 1000 240 253 13 25 44

NSMO-11 Nd0.67Sr0.33MnO3 1100 245 249 4 30 45
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Experimental data of NSMO material



Sample
code

Compo
sitional
formul
a

Sintering
temperat
ure (in
oC)

TP (in
Kelvin)

TC (in
Kelvi
n)

T (TC

- TP) in
Kelvin

Crystal
lite size
S (nm)

MR%

NSMO8 Nd0.67Sr
0.33MnO
3

800 215 268 45 15 45

NSMO9 Nd0.67Sr
0.33MnO
3

900 225 258 33 20 47

NSMO
10

Nd0.67Sr
0.33MnO
3

1000 240 253 13 25 44

NSMO-
11

Nd0.67Sr
0.33MnO
3

1100 245 249 4 30 45
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Electrical transport and MagnetoResistance (MR)
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•In high magnetic fields
resistivity decreases drastically
at ferromagnetic to
paramagnetic transition
temperature (TC).

•MR = ρ(H) - ρ(O)/ ρ(O)



Fig 6
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•ρ= ρ0 + ρ2*T2

•ρ= ρ0 + ρ2.5*T2.5

•ρ= ρ0 + ρ2*T2

+ρ4.5*T4.5



Sample code = 0+2T2 = 0+2.5T2.5 = 0+2T2 +4.5T4.5

NSMO-8 0.9910 0.9894 0.9993
NSMO-9 0.9977 0.9945 0.9992

NSMO-10 0.9961 0.9946 0.9993
NSMO-11 0.9931 0.9946 0.9993

Sample
Code

0 (cm) 2 (cm K-) 4.5(cm K-4.)

0T 7T 0T 7T 0T 7T
NSMO-8 8.75 4.09 10.0010- 5.0010- 4.1810- 2.1310-0

NSMO-9 5.44 1.81 4.4010- 2.2010- 9.9710- 8.3910-

NSMO-10 5.09 1.33 1.8110- 1.8010- 2.9410- 7.6410-2

NSMO-11 4.88 0.89 1.710- 1.5010- 2.0810- 5.1510-2

ρ0 = grain boundary resistivity

ρ2.5 = resistivity due to electron-electron scattering

ρ4.5 = resistivity due to electron-magnon scattering
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Square of Linear Correlation Coefficient (R2)



From the above Transport studies in ferromagnetic
metallic region, it is known that…….

•Grain boundary resistivity (ρ0) and the resistivity due to
electron-electron scattering (ρ2) increase with the decrease of
particle size and these values are larger than their bulk
counterparts - size effect.

•Resistivity due to electron-magnon scattering or spinwave
scattering (ρ4.5) also decrease with the increase of particle size
which may be due to the partial alignment of spins.

•All the three parameters (ρ0, ρ2, ρ4.5) found to decrease with
the increase of magnetic field attributed to the suppression of
scattering mechanisms.
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Paramagnetic Insulating region

Variable Range Hopping (VRH) model: T<Tp<Θd/2

Mott’s Equation for
VRH model is
σ= σ0 exp (-T0/T)-1/4
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σ0 = pre factor

To= 16α3/KBN(EF)

N(EF) = density of states at
the fermi level
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Polaron hopping model: Tp>T>Θd/2

Adiabatic process:

ρ= ραT exp (Ep/KBT)
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Non-Adiabatic process:

ρ= ραT3/2 exp (Ep/KBT)

It is found that the
adiabatic hopping
mechanism is applicable
for the present system.



EP(meV) T(10K) N(EF)(eV-1 cm-3)Sample

code

D

(K)
B=0T B=7T B=0T B=7T B=0T B=7T

NSMO-8 530.4 140.99 95.99 3.87 0.49 5.2410 4.14101

NSMO-9 540.8 130.92 87.82 2.56 0.31 7.9310 6.51101

NSMO-10 550.5 125.95 79.28 1.05 0.20 19.2510 9.80101

NSMO-11 561.1 118.83 78.84 0.63 0.13 31.9610 14.60101

Fitted parameters:

Department of Physics, Indian Institute of Science, Bangalore.

θD/2 = The temperature at which the
deviation from the linearity occurs.

θD = Debye temperature.

EP = Activation energy.



From the above transport studies in the
paramagnetic insulating phase, it is known that……

•To values are found to decrease enormously and
continuously with the increase of particle size and magnetic
field.

•Consequently the density of states increase with the
increase of particle size in both the presence and absence of
magnetic field.

•Debye temperature decreases with the particle size.

•Activation energy values are found to increase
continuously with the decrease of particle size both in the
presence and in absence of magnetic field –may be due to
the interconnectivity effect between two grains.
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AC susceptibility measurements:

to find out the magnetic phase transitions
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TC = obtained by the
inflexion point of the
susceptibility graph as
shown in the inset figure.

TC values of NSMO

Bulk = 200 K

NSMO-11 = 249 K

NSMO –10 = 253 K

NSMO –9 = 258 K

NSMO –8 = 260 K



From the above susceptibility measurements, it is
known that……

•As the particle size decreases from 30 nm to 15 nm, the
ferromagnetic to paramagnetic phase transition
temperature (TC) increases from 248 K to 260 K. The TC of
this compound in it’s bulk form is 200 K. An upward shift
of 60 K is observed when the particle size is decreased.

WHY? May be due to the Unit cell volume contraction

( order of 1% - 2%) and the reduction in the unit cell anisotropy
parameter.
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•The above changes cause the decrease and increase of
bond length and bond angle respectively, enhances the
bandwidth and transfer integral which pushes the electron
to hop easily and thereby shows the enhancement in Tc.
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Motivation behind the EMR work in Manganites

•Manganites are strongly correlated electron systems where the
charge, spin, orbital and lattice degrees of freedom are
interrelated

•EMR is a microscopic probe to complex Spin Dynamics

•Sensitive to Spin-Orbit Coupling (through the shift in the
g value of the Spectra)
•Sensitive to Spin-Spin and spin lattice couplings(through the
linewidth).

•EMR is sensitive to the local environment of the Spins.



Origin of ESR signal in Manganites

Two magnetic ions are : Mn3+ , S = 2 Mn4+ ,S = 3/2

Both Ions contribute to EMR line Intensity

(Causa et. al. PRB, 58,1998)

Issue related to the EMR in manganites
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EMR experimental details:

•The EMR experiments were carried out using the
Bruker ER 200D ESR spectrometer having the
temperature ranges from 4 K to 300 K.

•To isolate the nanoparticles electrically and
magnetically, they were dispersed in the paraffin wax and
the EMR experiments were done on the dispersed
nanoparticles.

•DPPH was used as a field marker to measure the g –
value accurately.
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Why EMR studies of nanomanganites?

•EMR is very sensitive local probe in condensed matter
physics which gives the information about the complex spin
dynamics, charge states, g-value, internal magnetic fields and
magnetic phase transitions (if any) in strongly correlated
systems.

•Individual (isolated) grain response is obtained by
dispersing the nano powder in the diamagnetic paraffin wax
which is not possible in other magnetic experiments, which
shows the sensitivity of EMR technique.

•The information is obtained by fitting the EMR signals in to
appropriate line shape, extract the parameters (line width,
resonance field and intensity) by fitting and plot them with
the temperature.

• Department of Physics, Indian Institute of Science, Bangalore.



•There are very few reports (Shames etal) of EMR studies of
nanomangnites. In their study (mostly in paramagnetic region), it
is shown that nanomanganites (La0.7Sr0.3MnO3) are less
homogeneous when compared to their bulk counterparts and
didn’t address the nanoparticle properties in ferromagnetic
region.

•There are some theoretical and experimental reports on
nanomanganites which address the core-shell model and
estimated the shell thickness.

•Two NMR signals were observed from nano La0.7Sr0.3MnO3
manganite. It is observed that one signal comes from the core
(due to Mn3+/4+) and the other signal comes from the shell (due to
Mn+4 only).

•EMR is being the the most sensitive to the presence of unpaired
electrons and their environment, in this study we have shown the
presence of core and shell regions in naoparticle which are
different in magnetic nature.
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NSMO BULKNSMO NANO
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FMR lineshape (in ferromagnetic phase)
Two Gaussian absorption model

EMR lineshape (in paramagnetic phase)

Single Lorentzian derivative model
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How to indentify the core-shell EMR signals?

•The core region is ferromagnetically ordered and exhibits
it’s bulk properties. The shell spins are magnetically
disordered which contains defects, vacancies and dangling
bonds. So the core signal (black symbol) is more intense
than the shell signal (red symbol).

•The core spins are subjected to the Weiss field, gets added
up to the applied external field making their resonance
appear at a lower field. Shell signals have larger linewidths
than the core signals.
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Conclusions from the EMR results:

•EMR signals of bulk and nano samples show different in shape in
ferromagnetic phase.

•EMR signals fit into two Gaussians in the ferromagnetic phase of nano
NSMO, indicates the presence of two signals and in the paramagnetic phase
EMR signals fit into a single Lorentzian.

•g –value in the paramagnetic phase increases (1.9806 –1.9852) as with the
decrease of particle size. This shows that spin –orbit coupling and crystal
fields are effected by the size of particle.

•Linewidth magnitude which gives information about the spin dynamics
changes with the particle size in the paramagnetic phase.

•Differences are seen in the EMR properties of NSMO-8 and NSMO-11.
This may be due to the presence of single domain particles in NSMO-8 and
NSMO-11 contains both single and multidomain particles.
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Summery:

•Transport properties are studied both in the presence
and in the absence of magnetic field and also shown the

effect of particle size .

•AC susceptibility measurements were done to see the
effect of particle size on magnetic phase transition

temperatures.

•EMR experiments have been done to study the effect of
grain size on EMR spectral properties and probed the

core –shell regions of the nanoparticle.
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Principles of Electron Paramagnetic
Resonance (EPR)

Magnetic field

E
ne

rg
y

h= gH0

H0

: Frequency of
microwave
radiation

g: g factor

: Bohr Magneton

H0: Resonance
Field

Resonant absorption of microwave radiation
across the Zeeman split electronic energy levels.



g :g : obtained from the resonant field Hobtained from the resonant field H00

H:H: linewidth proportional to 1/Tlinewidth proportional to 1/T22 (T(T22 is the spin spin relaxationis the spin spin relaxation
time)time)

1/T1/T22 = 1/T= 1/T22' + 1/2T' + 1/2T11

Intensity:Intensity: area under the curve proportional to the number ofarea under the curve proportional to the number of
spins contributing to the EPR signalspins contributing to the EPR signal

A/B ratio:A/B ratio: measures the asymmetry of the EPR signal frommeasures the asymmetry of the EPR signal from
single crystals. It depends on the ratio of the sample thicknesssingle crystals. It depends on the ratio of the sample thickness toto
skin depth and of the electron diffusion time Tskin depth and of the electron diffusion time TDD to Tto T22

Parameters obtained from EPRParameters obtained from EPR



Origin of linewidth

•Possible mechanisms:
•Dipolar interaction
•Crystal Field interaction
•Dzyaloshinsky Moriya (antisymmetric exchange

interaction)
•Exchange narrowed dipolar linewidth:~ 3 Gauss
•Observed linewidth ~ 1800 Gauss (isotropic

exchange interaction)

Huber et al., J. Appl. Phys. 83, 6949, 1998Huber et al., J. Appl. Phys. 83, 6949, 1998



Origin of linewidth

•Possible mechanisms:
•Dipolar interaction
•Crystal Field interaction
•Dzyaloshinsky Moriya (antisymmetric exchange

interaction)
•Exchange narrowed dipolar linewidth:~ 3 Gauss
•Observed linewidth ~ 1800 Gauss (isotropic

exchange interaction)
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Origin of Linewidth

•Due to non zero orbital angular momentum of the
ground state of Mn ions, in the octahedral crystal
field, there is large zero field splitting providing a
channel for rapid relaxation.

•Hence EPR signal is broadened out beyond
observability.

•However, due to strong exchange narrowing
effect, the natural linewidths are substantially
reduced, rendering the EPR signals observable.



EPR Linewidths

Crystal field and DM interaction cause
further broadening of the lines

As seen by the temperature dependence
and orietation dependence of linewidths

No effect of spin lattice r elaxation
No effect of double exchange

Narrowed down by isotropic spin spin interaction

Very large natural linewidths from Mn ions


