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Optical Transitions in Infinitely High Cylindrical Quantum Dot 

A. Amiryan 

State Engineering University of Armenia 

 

Direct optical absorption of light in cylindrical quantum dot is theoretically investigated. 

Analytical expressions for light absorption coefficients at strong and weak size quantization 

regimes are found. The corresponding selection rules for optical transitions are defined.  The 

expressions for absorption threshold frequencies are found. 

  

Introduction 

 Quantum dots (QD) belong to the most intensively investigated objects of nanophysics. 

The unique feature of such systems consists in the fact, that the motion of particles inside them is 

quantized in all three directions. Therefore it is not occasionally that these systems are called as 

“artificial atoms”. An outstanding property of QD is the possibility to rule their energy spectrum 

during the growth of particular patterns. Up-to-date growth methods of nanostructures allow to 

obtain QD’s of different shapes and sizes [1]. Till now spherical, pyramidal and cylindrical QD's 

are grown up. 

 Physical properties of QD's are studies both theoretically and experimentally. In 

particular, electronic and impurity states in QD's are investigated in details (see, e.g., [2-8]). As a 

result of these investigations the strong coupling between the character of QD energy spectrum 

and its geometrical parameters (size, shape) is revealed. At this physical chemical properties of 

both QD and surrounding medium form the character of potential well. On the other hand QD 

shape and sizes define the height and symmetry of this potential. 
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 Thus it is natural to suppose that optical, kinetic, etc. properties of QD depend on 

abovementioned characteristics as well. In particular, it is well-known that the spectrum of direct 

optical absorption in semiconductors is conditioned by wave functions and energy spectrum of 

charge carriers inside them [9]. One of the first articles, investigating optical absorption in QD 

belong to Efros' [10]. The authors of it theoretically investigated the pecularities of direct optical 

absorption in spherical QD with confinement potential, described within the frameworks of 

spherically symmetrical infinitely high potential well. Later on the authors of [11] considered 

light absorption in spherical QD and took into account the anysotropy of band structure. It was 

shown, that the account of anysotropy results in appearance of optical transitions, forbidden in 

isotropic approximation. That is why it is reasonable to expect, that changing QD geometrical 

shape may result in the appearance of new transitions between levels as well. Therefore the 

interest towards the investigation of QD nonsphericity influence onto direct optical absorption 

appears in quite natural way.  

 In given article direct optical absorption in cylindrical QD is theoretically investigated.  

At this strong and weak regimes of size quantization are discussed. 

 

Theory 

 Let's consider a particle inside cylindrical QD with confinement potential of the 

form 

( , , ) ( ) ( )conf conf conf zV z V V zρρ ϕ ρ= + ,     (1) 

where )(zV zconf  is QD confinement potential in the oZ  direction (cylinder axis direction), 

( )confV ρ ρ  is QD confinement potential in xoy  plane: 



 4 

0, | | ,
( )

, | | .conf z

a
V

a
ρ

ρ
ρ
≤

= ∞ >
,     (2) 

( )
2 2

2;  
2
z

conf z
zV z

L
µω γω

µ
 

= = 
 

.    (3) 

Here a  is the radius of crossection of cylindrical QD, L  is the height of cylinder, γ  is 

dimensionless fitting parameter. 

Sroedinger equation looks like 

2
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− ∆ + + = .     (4) 

The corresponding solution of this equation can be written as [12]  
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 defines the energy of flat motion, µ  is the effective mass of charge carriers, C  is 

normalizing constant of flat motion, ( ),m n mJ
ρ

κ ρ  is Bessel cylindrical function, m  is magnetic 

quantum number, nρ  is radial quantum number, equal to the number of zeroes of ( ),m n mJ
ρ

κ ρ  

function (excluding zeroes at aρ =  and 0ρ =  (for 0m ≠  case)), ( )xH n  is Hermit polynomial, 
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n  is the quantum number, describing the motion in oZ  direction, 1,n mρ
α +  is ( 1nρ + )-th root of 

( )1, 0m n mJ
ρ

α + =  Bessel function (in ascending order of 1,n mρ
α + ); particularly, 

10 112.40,  3.83α α≈ ≈  and, correspondingly, 
2 2

00 012 22.88 ,  7.33 ,E E
a aµ µ

≈ ≈  (for details see 

[12]). 

For energy levels, in its turn, we have 
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Thus considered QD model is analytically exact solvable. This fact allows to calculate the 

coefficients of interband direct light absorption in this system. The calculation of absorption 

coefficient (AC) of light will be performed for two cases of size quantization: 

a. The regime of strong size quantization, when excitonic effects can be neglected. 

b. The regime of weak size quantization, when the main input into the energy of system is 

conditioned by excitonic interactions. 

 a. The regime of strong size quantization. 

According to Ref. [10] AC is determined using the formulae  

( )2

,

e h e h
n mn n mnn m n n m n

n n
mm
nn

K A dr E E
ρ ρρ ρ

ρ ρ

ψ ψ δ′ ′′ ′ ′ ′
′

′
′

= ∆ − −∑ ∫ ,   (9) 

where gE−=∆ ω  ( gE  is the width of forbidden band), ω  is the frequency of incident light, e  

subscript denotes electron, h  denotes the hole, A  is the quantity, proportional to the  square of 

modulus of dipole moment matrix element, taken on Bloch functions. Let’s also mention, that we 

suppose, that he µµ << . 
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At strong size quantization regime, when { } { }h
B

e
B aaL ,,0 <<ρ  ( )(he

Ba  is Bohr radius of 

electron (hole)), the influence of QD walls is so strong, that we can use one-particle 

approximation and neglect Coulumb interactions between electron and hole. Then we can use 

Eqs. (5)-(9) and for AC write 
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where 

( ) ( ) ( )∫
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∞−
′′ +−= dzzzHzHI zhzezhnzennn ]exp[ 2

2
1 λλλλ ,    

,
e h

e z h z
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µ ω µ ωλ λ= = , 

D   is the constant, which can be expressed through normalizing constants of wave functions.  

 

b. The regime of weak size quantization. 

 At this regime of size quantization the highest energy is exciton binding energy. Therefore 

wave function of the system by analogy with Ref. [10] can be presented as 

( ) )()(, Rfrrr he ϕψ = ,      (11) 

where he rrr −= , 
he

hhee rr
R

µµ
µµ

+
+

= , )(rϕ  is the wave function of relative motion of electron and 

hole, )(Rf  is the wave function, describing the motion of exciton center of mass. Thus for 

considered model the expression for )(Rf  will coincide with (5). The only difference is that 
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instead of еµ  or hµ  will be the heM µµ +=  quantity. Correspondingly, energy values will look 

like: 
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    (12) 

where 2~z ML
Ω , exE  is exciton binding energy. As to )(rϕ  function, it can be expressed 

through the well-known wave functions of hydrogen-like atom. 

 Supposing, that exciton is mainly localized near QD center and the influence of QD walls 

onto the binding energy exE  is weak, at the same time, taking into account inequalities 

{ } { }Laa h
B

e
B ,, 0ρ<<  for the AC we have [10] 
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By the relative motion, the only non trivial value of )0(ϕ  corresponds to the state 0== ml  and 

is equal to 

3

1)0(
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ϕ = ,      (14) 

where exa  is exciton radius. 

 For AC after the integration we correspondingly have: 
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Discussion 

Let’s mention at once that in the first case in z  direction the transitions takes place, 

satisfying the selection rule tnn 2=′− , where t  is integer, as it straightforwardly follows from 

the properties of Hermite polynomials. Thus the transitions in oz  direction take place between 

the levels with same parity. As to the transitions in xoy  plane, the selection rule m m′= − , 

n nρ ρ
′=  takes place for them. Let’s mention, that in the case of spherical impermeable well [10] 

due to the orthogonality of Bessel functions at the analogous quantization regime the transitions 

took place between levels with equal orbital and radial quantum numbers. As to the magnetic 

quantum numbers, they again satisfy the relation mm ′−= . With the help of Eq. (10) for 

absorption threshold frequencies we can write 
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In Eq. (15) the summation is performed over odd values of n . It means, that the 

transitions on oZ  direction take place between odd levels. In this case threshold frequencies will 

be determined according to the relations 
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