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Abstract. The numerous technical applications in electronic and optoelectronic devices, such as
lasers, diodes, and sensors demand high-quality silicon carbide (SiC) bulk single crystal for industrial
applications. We consider a SiC crystal growth process by physical vapor transport (PVT), called
modified Lely method. We deal with a model for the thermal processes within the growth appa-
ratus, involving a heat equation with heat sources due to induction heating and nonlocal interface
conditions, representing the heat transfer by radiation. The study of the temperature evolution in
the apparatus is important for understanding and optimizing the crystal growth process. We present
results of some numerical simulations of the growth apparatus with respect to grid refinements and
discuss numerical errors in the simpler stationary case.
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1. Introduction and mathematical model. The motivation for this study
comes from the technical demand to simulate a crystal growth apparatus for SiC
single crystals. The single crystals are used as a high-valued and expensive material
for optoelectronics and electronics, cf. [8]. The silicon carbide (SiC) bulk single crystal
are produced by a growth process through physical vapor transport (PVT), called
modified Lely-method. The modeling for the thermal processes within the growth
apparatus is done in [4] and [10]. The underlying equations of the model are given as
follows:

a.) In this work, we assume that the temperature evolution inside the gas region
Ωg can be approximated by considering the gas as pure argon. The reduced heat
equation is

ρg∂tUg − ∇ · (κg∇T ) = 0, (1.1)

Ug = zAr RAr T, (1.2)

where T is the temperature, t is the time, and Ug is the internal energy of the argon
gas. The parameters are given as ρg being the density of the argon gas, κg being
the thermal conductivity, zAr being the configuration number, and RAr being the gas
constant for argon.

b.) The temperature evolution inside the region of solid materials Ωs, e.g. inside
the silicon carbide crystal, silicon carbide powder, graphite, and graphite insulation,
is described by the heat equation

ρs ∂tUs − ∇ · (κs∇T ) = f, (1.3)

Us =

∫ T

0

cs(S) dS, (1.4)
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2 2. DISCRETIZATION

where ρs is the density of the solid material, Us is the internal energy, κs is the thermal
conductivity, and cs is the specific heat.

The equations hold in the domains of the respective materials and are coupled
by interface conditions, e.g. requiring the continuity for the temperature and for the
normal components of the heat flux on the interfaces between opaque solid materials.
On the boundary of the gas domain, i.e. on the interface between the solid material
and the gas domain, we consider the interface condition

κg ∇T · ng + R − J = κs ∇T · ng, (1.5)

where ng is the normal vector of the gas domain, R is the radiosity, and J is the
irradiosity. The irradiosity is determined by integrating R along the whole boundary
of the gas domain, cf. [7]. Moreover, we have

R = E + Jref, (1.6)

E = σ ε T 4 (Stefan-Boltzmann equation), (1.7)

Jref = (1 − ε) J, (1.8)

where E is the radiation, Jref is the reflexed radiation, ε is the emissivity, and σ is
the Boltzmann radiation constant.

The density of the heat source induced by the induction heating is determined
by solving Maxwell’s equations. We deal with these equations under the simplifying
assumption of an axisymmetric geometry, axisymmetric electromagnetic fields, and a
sinusoidal time dependence of the involved electromagnetic quantities, following [12].
The considered system and its derivation can be found in [4], [6], and [10].

In this paper, we focus on the discretization and material properties, which are
important for realistic simulations. Our underlying software tool WIAS-HiTNIHS, cf.
[10], allows us flexibility in the grid generation and for the material parameters.

In the next section, we describe the used discretization.

2. Discretization. For the discretization of the heat equation (diffusion equa-
tion), we apply the implicit Euler method in time and the finite volume method for
the space discretization, cf. [2], [4], and [10]. We consider a partition T = (ωi)i∈I of
Ω such that, for m ∈ {s, g} (with s solid, g gas) and i ∈ I , ωm,i := ωi ∩ Ωm defines
either a void subset or a nonvoid, connected, and open polyhedral subset of Ω. By
integrating the corresponding heat equation (1.1) or (1.3) over ωm,i, we derive the
following nonlinear equations for the temperature variables,

ρm

∫

ωm,i

(Um(T n+1) − Um(T n)) r dx

−∆tn+1

∫

∂ωm,i

κm(T n+1) ∇T n+1 · nωm,i
r ds = ∆tn+1

∫

ωm,i

fm r dx, (2.1)

where the time interval is ∆tn+1 = tn+1 − tn. The temperature is given as T n+1 =
T (tn+1, x), where x represents cylindrical coordinates. For the right-hand sides, we
demand fs := f ≥ 0 and fg = 0.
More details of the discretization and of dealing with the interface conditions are
presented in [3], [4], [5], and [10].

In the next section, the properties of the materials in the crystal growth apparatus
are described.
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3. Material properties. For the technical realization of the apparatus, we im-
plement the axisymmetric geometry given in [11], which is presented in Fig. 3.1.
Furthermore, the properties of the materials are specified in [3], [4], and [9].
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Fig. 3.1. The growth apparatus’ dimensions: rmin = 0, rmax = 8.4 cm, zmin = 0, zmax =
25.0 cm, the coil rings’ dimensions: rmin = 4.2 cm, rmax = 5.2 cm, zmin = 0, zmax = 14.0 cm.

Within the following specific material functions and parameters for the processes,
the thermal conductivity κ is given in W/(m K), the electrical conductivity σc is given
in 1/(Ohm m), the mass density ρ is given in kg/m3, the specific heat csp is given in
J/(K kg), the temperature T is given in K and the relative gas constant RAr is given
in J/(K kg). Further the emissivity ε and relative magnetic permeability µ are given
dimensionless.

For the gas phase (argon), we have

κAr(T ) =















1.83914 10−4 T 0.800404 T ≤ 500,
−7.128738 + 6.610288 10−2 T − 2.440839 10−4 T 2

+4.497633 10−7 T 3 − 4.132517 10−10 T 4 + 1.514463 10−13 T 5 500 ≤ T ≤ 600,
4.1944 10−4 T 0.671118 600 ≥ T,

σc,Ar = 0.0, ρAr = 3.73 10−3, µAr = 1.0, zAr = 3/2, RAr = 2.081308 10−2.
For graphite felt insulation, we have

κIns(T ) =















8.175 10−2 + 2.485 10−4 T T ≤ 1473,
−1.1902 102 + 0.346838 T − 3.9971 10−4 T 2 + 2.2830 10−7 T 3

−6.46047 10−11 T 4 + 7.2549 10−15 T 5 1473 ≤ T ≤ 1873,
−0.7447 + 7.5 10−4 T 1873 ≥ T,



4 4. NUMERICAL EXPERIMENTS

εIns = 0.2, σc,Ins(T ) = 2.45 102 + 9.82 10−2 T , ρIns = 170.00, µIns = 1.00,
csp,Ins = 2100.00.

For the graphite, we have
κGraphite(T ) = 37.715 exp(−1.96 10−4 T ),

εGraphite(T ) =















0.67 T ≤ 1200,
3.752− 7.436 10−3 T + 6.4163 10−6 T 2

−2.3366 10−9 T 3 − 3.0833 10−13 T 4 1200 ≤ T ≤ 2200,
0.79 2200 ≥ T,

σc,Graphite = 104, ρGraphite = 1750.0, µGraphite = 1.0,
csp,Graphite(T ) = 1/(4.411 102 T−2.306 + 7.97 10−4 T−0.0665).

For the SiC crystal, we have
κSiC-C(T ) = exp(9.892 + (2.498 102)/T − 0.844 ln(T )),
εSiC-C = 0.85, σc,SiC-C = 105, ρSiC-C = 3140.0, µSiC-C = 1.0,
csp,SiC-C(T ) = 1/(3.91 104 T−3.173 + 1.835 10−3 T−0.117).

For the SiC powder, we have
κSiC-P(T ) = 1.452 10−2 + 5.47 10−12 T 3,
εSiC-P = 0.85, σc,SiC-P = 100.0, ρSiC-P = 1700.0, µSiC-P = 1.0, csp,SiC-P = 1000.0.

The functions are programmed in our flexible software package WIAS-HiTNIHS.
In the next section, we present results of our numerical experiments.

4. Numerical experiments. For the numerical results, we apply the parameter
functions in Section 3. We consider the geometry shown in Fig. 3.1, using a constant
total input power of 10 kW, cf. [11]. The numerical experiments are performed using
the software WIAS-HiTNIHS, cf. [10], based on the software package pdelib, cf. [1],
which uses the sparse matrix solver PARDISO, cf. [13]. We compute the coupled
system consisting of the heat equations and Maxwell’s equations. For the growth
process, the temperature difference Tss = T (rsource, zsource) − T (rseed, zseed) (with the
coordinates (rsource, zsource) = (0, 0.143) and (rseed, zseed) = (0, 0.158), corresponding
to the points Tsource and Tseed in Fig. 3.1) is crucial. On the other hand, in the
physical growth experiments, usually only the temperatures T (rbottom, zbottom) and
T (rtop, ztop) (with the coordinates (rbottom, zbottom) = (0, 0.028) and (rtop, ztop) =
(0, 0.173), corresponding to the points Tbottom and Ttop in Fig. 3.1) are measurable
and their difference Tbt = T (rbottom, zbottom) − T (rtop, ztop) is often used as an indi-
cator for Tss. In Fig. 4.1, we present the temperature differences Tss and Tbt. As a
result of our computations, the temperature difference Tbt can only restrictively be
used as an indicator for the temperature difference Tss, cf. the discussions in [3] and
[7].

The further computations are based on the stationary case, dealing with Equa-
tion (1.1) by discarding the terms with a time derivative. For this case, the results
are virtually equal to the one in the transient case with t > 15000 sec. For the sta-
tionary results, we focus on the error analysis for the space dimension by applying
the grid refinement. The solutions for the heat equation are computed at the points
T (rbottom, zbottom) and T (rtop, ztop) for successive grids. For the error analysis, we
apply the following error differences

εabs = |T̃j+1(r, z) − T̃j(r, z)|, (4.1)

where T̃j(r, z) and T̃j+1(r, z) are solutions evaluated at the point (r, z) which have
been computed using the grids j and j + 1 respectively. The elements of the grid
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Fig. 4.1. Transient results for the temperature differences Tbt and Tss.

j + 1 are approximately 1/4 of the elements of the grid j. The results are presented
in Table 4.1.

Grid Grid Point (0, 0.028) (Tbottom) Grid Point (0, 0.173) (Ttop)
Level Number Solution Absolute Solution Absolute

of Nodes T [K] Difference T [K] T [K] Difference T [K]

0 1532 2408.11 2813.29
1 23017 2409.78 1.67 2812.78 1.01
2 91290 2410.35 0.57 2811.79 0.49
3 364225 2410.46 0.11 2811.60 0.19

Table 4.1

Computations on different grids for the errors analysis with absolute differences, cf. (4.1).

The result of the refinement indicates the reduction of the absolute difference
as it is demanded for the convergence of the discretization method. The method is
stabilized in the presented refinement by reducing the differences.

In Fig. 4.2, the temperature field is presented for the stationary case. The tem-
perature increases from the bottom to the middle of the graphite pot, and decreases
from the middle to the top of the graphite pot.

In the next section, we present the conclusion of our simulations.

5. Conclusion. We have presented a model for the heat transport inside a tech-
nical apparatus for crystal growth of SiC single crystals. We introduce the heat
equation and the radiation of the apparatus and the coupled situation of the different
materials. The equations are discretised by the finite volume method and the complex
material functions are embedded in this method. Transient and stationary results are
presented leading to some information about the processes within the technical appa-
ratus. We present numerical results for the stationary case to support the accuracy
of our solutions. In our future work, we concentrate on further implementations and
numerical methods for a crystal growth model.



6 REFERENCES

Stationary Temperature Field

height = 25 cm

radius = 8.4 cm

T_min=537.517 K
T_max=3312.53 K
delTmax=0 K

prescribed power = 10000 W
frequency = 10000 Hz

coil:
5 rings
top = 0.18 m
bottom = 0.02 m

|
300
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

3300 T[K]

50 delta T[K] between isolines

heating power in crucible=7811.89 W
heating power in coil=2188.11 W

Fig. 4.2. Temperature field for the apparatus simulated for the stationary case with 23017 nodes.
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