

	JNIVERS	ITY of	NEW	Намі	PSHIRE			NPRC Institution
			Exa	ample	e Distri	butions		
		<u>System</u>	<u>di(nm)</u>	<u>ni</u>	<u>dn(nm)</u>	<u>dw(nm)</u>	DI	
		A	400 1000 2000	100 10 1	470	1890	2.7	
		В	100 1000	10 10	550	999	1.8	
		С	100	100	100	100	1.0	
-	Oct 31 2005			Copyrighted	- University of Nev	v Hampshire		101

1.	Marka Electronical	Circ manufactor	
	Metroconstruction	size range/um	
	17. Microtrac Series 9200	0.1-700	
	SRA	0.2-700	
	UPA	0.003-6.0	
	Microtrac X100	0.1-700	
	19. Prototron Laser L. S.	1.0-100	
2	 Seishin Micron Photosizer (MPS 2000) 	0.1-500	
	21. API Acrosizer 22. HORIBA CAPA 200	0.2-700	
	Centrifugation	0.01-30	
72	Gravitational	10.0-300	
	CAPA 500	0.04-300	
568	LA 500 ^e (laser diffraction)	0.1-200	
	1.4 900	0.04-1000	
2	LA 910 ^e	0.02-1000	
12	23. APS 33 Aerodynamic	0.3-15	
	24. DMPS (TSI (aerosol)	0.01-1.0	
	 Coulter N-4 Plus (N4MD) Multiangle Confer DELSA 440SX Mobilands 	0.03-3.0	
	Coulter LS 200 (laser diffraction)	0.04-2000	
	Coulter LS 230	0.04-2000	
	26. Malvern Autosizer HI-C	0.003-3.0	
	LO-C (laser diode and fibre optics)	0.003-3.0	
2	Zetasizer-3	0.001-30	
	Mastersizer Micro*	0.3-300	
7 2	Mastersizer X*	0.1-2000	
2	Mastersizer S*	0.05-3500	
	 Pen Kem System 3000 	0.01-50	
	28 NICOMP Model 200/320	0.003-5.0	
2	29. Shimadau SACP4 (11000 rpm)	0.01-500	
	SACP3 (5000 rpm)	0.02-300	
e	SALD [*] 1100 (laser diffraction)	0.1-500	
	BLDCP	0.01-30	
	BI-XDC	0.01-100	
	B1-90	0.002-2.0	
8	 FF Fractionation, Inc. 	0.05 00	
	SFFF-S101	0.05-80	
1	12 Accusing 720 (PSS)	<0.5-2500	
	 Ouantochrome Microscan II. 	0.1-300	
50 C	Cilas 715	1.0-192	
	Cilas 850	0.1-600	Credit: E.A. Collins in "Emulsion
	Cilas 920	0.7-400	
		20 B 4000	

Table 12.12 Comparison of latex particle diameter (um) measurements							
Method	Latex A (PVC copolymer)	Latex B (PVC homopolymer)	Latex C (acrylic copolymer)				
EM, d_n	0.292	0.096	0.273				
Joyce Loebel, d_{50}	0.274	0.095	0.273				
Coulter N.4 d	0.330	0.100	0.240				
95% in the range	(0.285 - 0.301)	(0.0936-0.096)	(0.282_0.205)				
NiComp 200 d.	0.285-0.501)	0.100	(0.282-0.293)				
Theomp 200, uh	(10%>0.064)	(50%>0.035)	(0 small)				
BI-90. d.,	0.289	0.097	0 294				
Polydispersity	0.06	0.078	0.005				
day	0.259	0.083	0.292				
HDC 5600	0.270	0.089	0.270				
d_n	0.340	0.089	0.320				
d_w	BiModal	Narrow	BiModal				
ſ	0 below 0.200	0 below 0.065	0 small				
Range {	0.112-0.420	0.065-0.110	0.110-0.400				
l	0.5-0.7 small peak	—	0.55-0.70				
SFFF d_n	0.236	0.058	0.238				
d _w	0.265	0.066	0.265				
SCM DCP d_n	0.279	0.080	0.306				
d_w	0.329	0.094	0.357				
$d_{\rm ls}$	0.351	0.125	0.381				
d _{is}	0.331	0.125	0.381				

	Prep	paration of a MIF)
Choice of the tar	get molecules		
Wide variety of an	alyte molecules have be	en successfully used for th	e preparation of selec
recognition matric	es		
Compour	nd Class Example	Compound Class	Example
drugs	timolol	amino acids ^a	nhenvlalanine
urugs	theophylline		tryptophan
	diazepam		tyrosine
	morphine		aspartic acid
	ephedrine		
		carbohydrates ^a	galactose
hormone	s cortisol		glucose
	enkephalin		fucose
pesticide	s atrazine	co-enzymes	pyridoxal
proteins	RNase A	nucleotide bases	adenine
proteins	Urease	indefeotide bases	adenine
	0.0000		

