Directed Osteoblast Adhesion at Metal Particle Boundaries

Ti6Al4V (nanophase)

Ti6Al4V (conventional)

Ti6Al4V (nanophase)

Ti6Al4V (conventional)

Bar = 10 μm.

Directed Osteoblast Adhesion at Metal Particle Boundaries

Ti (nanophase)

Ti (conventional)

Ti (nanophase)

Ti (conventional)

Bar = 10 μ m.

Bar = $100 \ \mu m$.

Enhanced Osteoblast Adhesion on Nanophase CoCrMo

Values are mean +/- SEM; n = 3; * *p* < 0.1 (compared to respective cell adhesion on conventional CoCrMo).

Enhanced Adhesion Translates into Increased Subsequent Functions Stages of Osteoblast Differentiation

Days in Culture

T. J. Webster, in <u>Advances in Chemical Engineering Vol. 27</u>, Academic Press, NY, pgs. 125-166, 2001.

Decreased Fibroblast Adhesion on Nanophase Ti and Ti6Al4V

Values are mean +/- SEM; n = 3; * p < 0.1 (compared to respective cell adhesion on conventional Ti or Ti6Al4V).

Decreased Fibroblast Adhesion on Nanophase CoCrMo

Values are mean +/- SEM; n = 3; * *p* < 0.1 (compared to respective cell adhesion on conventional CoCrMo).

Anodized Titanium

Sketch map of anodization system

PROCEDURES:

<u>Pretreatment</u>: chemical polishing using HF/HNO₃ mixture

Anodization: 0.5 or 1.5%HF

Voltage: 20V

<u>Time</u>: 20 min

Rinse and dry

<u>Clean</u>: acetone and ethanol

<u>Sterilize</u>

Increased Osteoblast Functions on Anodized Ti

Anodized Ti 1.5% HF treatment Nanotube Unanodized Ti

Bar = 1 micron

Anodized Ti 0.5% HF treatment Nano-particles

PART I (cont.): BONE Anticancer Implants

Se (Micron)

Se (Sub-Micron)

Se (Nano)

Se (Nano)

Bar = 1 micron

<u>PART I (cont.)</u>: Development of New Entheses (Collaboration with DePuy Orthopedics)

Bioactive region

Mechanical Interlock to Implant (LPS)

T-Tidemark;

B-Bone;

CF-Calcified fibrocartilage;

UF-Uncalcified fibrocatrilage

Successful Regeneration of Entheses

- Cell modulating layer
- Bioactive uncalcified zone
- Calcified zone
- Nanomaterial

-Metal implant with porous surface

Summary for Bone Applications

Compared to conventional formulations, nanophase:

- spherical particle size ceramics,
- fiber particle size ceramics,
- carbon nanofibers/nanotubes,
- polymer composites containing nanophase particles,
- polymer molds of nanophase materials,
- organic nanotubes,
- chemically-treated metals, and
- spherical particle size metals,

increase bone tissue regeneration.

T. J. Webster, in Advances in Chemical Engineering Vol. 27, Academic Press, NY, pgs. 125-166, 2001.

PART II Cartilage: Nanostructured Polymers

The Problem: Current Cartilage Implant Failures

- 1 4 mm in thickness
- Provides a smooth joint lubrication (µ ≈ 0.02)¹
- Wear resistant
- Shock absorbent
- Distributes applied load throughout the bone

http://www.soarmedical.com/medical-library/knee/anatomy/

¹ Armstrong, C.G. et al. Scientific Foundations of Orthopaedics and Traumatology. London: William Heinemann, 1980:223-232.

<u>The Problem</u>: Current Cartilage Implant Failures

- Direct trauma
- Degeneration due to ACL tear
- Arthritis

osteochondral defect

LaPrade R, Konowalchuk B, Fritts H, Wentorf F. *The physician and sportsmedicine*, 2001;29:5.

http://www.kneeclinic.info/problems_arti cular_cartilage.php

http://www.scarmedical.com/medical-library/knee/anatomy/

<u>Cartilage Tissue</u>: Another Nano-structured Tissue

Mow VC, Proctor CS, Kelly MA, in Nordin M, Frankel VH (eds): Basic Biomechanics of the Musculoskeletal System, ed 2. Philadelphia, Lea & Febiger, 1989, pp 31-57.

Increased Functions of Chondrocytes on Nano-structured Polymers

Bar = 10 microns

Conventional PLGA Nano-structured PLGA

Conventional PLGA Nano-structured PLGA

PART III Vascular: Nanostructured Polymers

<u>The Problem</u>: Current Vascular Implant Failures

Vascular Disease

- One of the leading causes of death in the US
- Peripheral and coronary artery diseases (hardening of the arteries)
- Affects approximately 58 million people

Vascular Tissue: Another Nano-structured Tissue

Attempts to Improve Vascular Tissue Engineering Scaffolds

Reduction of PGA fiber size has been observed from A (more than 10 microns) to C (less than 10 microns) after treatment with 1N NaOH for 10 minutes^{*}. Bar = 100 μ m

* Source: Gao J et al., J. Biomed. Mat. Res. 42(3):417-424, 1998.